京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的未来–个人信息/情报/认知服务的思考
1.未来大数据的一切都都关于人
不论述
2.大数据收集困难和高风险
现在的大数据的来源,都是通过自有平台收集用户数据的,对于没有平台的企业很难有机制和渠道获取稳定的数据来源。
有说通过法律和制度来,规范关于人的大数据使用,在这之前,唯一可行的方向是,把用户大数据使用,做成服务的必选功能,要使用服务,必须接受隐私风险。
3.对大数据的利用方式
现在的大数据 都是由各种数据聚合出一类关于人的结论 然后拿给企业使用。
我想大数据应用还有另一类。
利用网上的大数据,告诉某类人、甚至某个人,世界发生着什么,未来要发生什么。
4.科幻大片
如果从网上下载一个专属的虚拟人物(虚拟机器人/虚拟助理/终生人工智能伴侣)到手机。
刚开始这个角色需要你教导(配置,类似早期的语音识别控制的学习阶段)才能帮你在互联网上你做一些简单的事情。
随着你教导的更多更好(对你的习惯,兴趣爱好,思维模式,接收度等信息的收集) 和基于大数据的挖掘和分析能力的增加,它的智力越来越高,能做一些更复杂的任务(作为入口,代表你在互联网活动)。
直到很多年后,它的智力超过你,它能告诉你,世界发生着什么,未来要发生什么,它了解你的年龄,了解的行为习惯,了解你的经济能力,了解你缺点,时刻为你服务,扩展你的人生,使你的人生不局限于经验(网上有),思维(网上有),能更好的生活下去(帮你发现机会)。
类似的东西,后来才发现微软小冰二代已经在着手做了,可能愿景和目的不一样,但轮廓有了。
5.认知需求
我们成长的时候,家长常常说你懂点事吧,但如何懂事没有人能教给我们,也没有告诉我们如何去做(去阅读书籍,去体验生活,经历人生);
我们毕业了,工作了,在社会上依然遇到,各种成功学大师,各种领域专家,各种百家讲坛老师,各种转世神棍,大行其道;
这一切都是因为,人有认知的需求。
6.认知培训
基于这个需求,认知服务即使做不到自动,就算做人工服务,也能在现在的教育市场(学校,兴趣培训,英语培训,等技能培训)杀出一条出路。
7.认知模式与三分的认知世界
莱考夫(George Lakoff)在 [女人、火和危险的事物]([Women fire and dangerous things])一书中,认为理念化的认知模式(idealized cognitive models 简称ICMs)是结构复杂的感知整体,是对世界的整体表征,它的价值在于对输入信息进行重组。ICMs并不客观存在的,而是人类实践和经验的高度概括和总 结,并且可以为以后的实践提供参考。根据lakoff的论述,IMCs有四种:命题模式,意向图式模式,隐喻模式和转喻模式,它们的关系如下:
命题模式是出发点和归宿,意象图式模式是基础,转喻模式和隐喻模式是建立在命题模式和意象图式模式上的认知事物的过程和方式,并且二者相互作用。
任一认知主体的认知世界整体可以划分为三个部分:信念世界、怀疑世界和无知世界。我们用Wb表示信念世界,Wd表示怀疑世界,Wu表示 无知世界。Wb、Wd、Wu是三个命题集合,他们的元素是相应的认知命题。简单地说,信念世界是由认知主体相信的命题构成,这些命题构成认知主体的信念; 怀疑世界里的所有命题是认知世界说怀疑的,认知主体认为这些命题是假的或不可能的,这些命题可称为疑点;认知主体从来没有考虑过的命题构 成无知世界的内容,这些命题(以及它们的负命题)或者仍没有进入认知主体的视野之中,或者虽然进入了认知主体的视野之中但认知主体不知道其意义,此时,认 知主体对之既不相信又不怀疑,这些命题可称之为盲点。
8.认知互联网世界进而认知现实世界
互联网世界一直是互联网世界的映射,越来越多的现实世界事物在互联网世界建立了数字化的映射"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27