京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的未来–个人信息/情报/认知服务的思考
1.未来大数据的一切都都关于人
不论述
2.大数据收集困难和高风险
现在的大数据的来源,都是通过自有平台收集用户数据的,对于没有平台的企业很难有机制和渠道获取稳定的数据来源。
有说通过法律和制度来,规范关于人的大数据使用,在这之前,唯一可行的方向是,把用户大数据使用,做成服务的必选功能,要使用服务,必须接受隐私风险。
3.对大数据的利用方式
现在的大数据 都是由各种数据聚合出一类关于人的结论 然后拿给企业使用。
我想大数据应用还有另一类。
利用网上的大数据,告诉某类人、甚至某个人,世界发生着什么,未来要发生什么。
4.科幻大片
如果从网上下载一个专属的虚拟人物(虚拟机器人/虚拟助理/终生人工智能伴侣)到手机。
刚开始这个角色需要你教导(配置,类似早期的语音识别控制的学习阶段)才能帮你在互联网上你做一些简单的事情。
随着你教导的更多更好(对你的习惯,兴趣爱好,思维模式,接收度等信息的收集) 和基于大数据的挖掘和分析能力的增加,它的智力越来越高,能做一些更复杂的任务(作为入口,代表你在互联网活动)。
直到很多年后,它的智力超过你,它能告诉你,世界发生着什么,未来要发生什么,它了解你的年龄,了解的行为习惯,了解你的经济能力,了解你缺点,时刻为你服务,扩展你的人生,使你的人生不局限于经验(网上有),思维(网上有),能更好的生活下去(帮你发现机会)。
类似的东西,后来才发现微软小冰二代已经在着手做了,可能愿景和目的不一样,但轮廓有了。
5.认知需求
我们成长的时候,家长常常说你懂点事吧,但如何懂事没有人能教给我们,也没有告诉我们如何去做(去阅读书籍,去体验生活,经历人生);
我们毕业了,工作了,在社会上依然遇到,各种成功学大师,各种领域专家,各种百家讲坛老师,各种转世神棍,大行其道;
这一切都是因为,人有认知的需求。
6.认知培训
基于这个需求,认知服务即使做不到自动,就算做人工服务,也能在现在的教育市场(学校,兴趣培训,英语培训,等技能培训)杀出一条出路。
7.认知模式与三分的认知世界
莱考夫(George Lakoff)在 [女人、火和危险的事物]([Women fire and dangerous things])一书中,认为理念化的认知模式(idealized cognitive models 简称ICMs)是结构复杂的感知整体,是对世界的整体表征,它的价值在于对输入信息进行重组。ICMs并不客观存在的,而是人类实践和经验的高度概括和总 结,并且可以为以后的实践提供参考。根据lakoff的论述,IMCs有四种:命题模式,意向图式模式,隐喻模式和转喻模式,它们的关系如下:
命题模式是出发点和归宿,意象图式模式是基础,转喻模式和隐喻模式是建立在命题模式和意象图式模式上的认知事物的过程和方式,并且二者相互作用。
任一认知主体的认知世界整体可以划分为三个部分:信念世界、怀疑世界和无知世界。我们用Wb表示信念世界,Wd表示怀疑世界,Wu表示 无知世界。Wb、Wd、Wu是三个命题集合,他们的元素是相应的认知命题。简单地说,信念世界是由认知主体相信的命题构成,这些命题构成认知主体的信念; 怀疑世界里的所有命题是认知世界说怀疑的,认知主体认为这些命题是假的或不可能的,这些命题可称为疑点;认知主体从来没有考虑过的命题构 成无知世界的内容,这些命题(以及它们的负命题)或者仍没有进入认知主体的视野之中,或者虽然进入了认知主体的视野之中但认知主体不知道其意义,此时,认 知主体对之既不相信又不怀疑,这些命题可称之为盲点。
8.认知互联网世界进而认知现实世界
互联网世界一直是互联网世界的映射,越来越多的现实世界事物在互联网世界建立了数字化的映射"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12