
小议大数据的“能”与“不能” _数据分析师
当下,我们正处于数据爆炸的时代,全球的数据量正在以每18个月翻一倍的惊人速度增长,世界正在高速数字化。大数据也是当下各行各业都在谈论的话题,某些数据分析师甚至扬言:如果可以实时、精确的捕捉一切数据,并且有足够高效的算法与储存设备,大数据可以分析并解决一切问题。窃以为,这样的说法太过绝对,现实情况并非如此。大数据并非是无所不能的。
笔者在这里试图从应用的角度分析一下电信行业大数据能做的和不能做的事情,而对于业务层面的能与不能。将留待后续文章再述。
大数据在面向客户层面能做的事情:
1、完善客户画像,洞察客户特征:拥有更全面的客户数据后,能更逼近客户的真实情况。大数据因其强大的数字记忆功能,在一定程度上能做到比客户自己还要更了解客户,具有读心术功能,这个容易理解;
2、发现行为模式的DNA,预测客户将发生的动作:法国数学家泊松说过:一旦我们承认人类行为是随机的,它突然之间就可以被预测了。《爆发》作者艾伯特拉斯洛巴拉巴西据此认为:依据泊松分布规律推断,人类行为93%是可以预测的。大数据的核心功能就是关联预测,比如识别离网客户在离网前的行为模式DNA,就能推测出所有在网客户在某个时期的离网率。类似的还有客户换机时间、偏好机型的预测等等。
3、识别客户需求偏好,开展个性化服务:还是围绕客户来说,大数据能发现客户的兴趣偏好、渠道偏好等,在规则引擎的实时触发作用下,相应的触点就能即时捕捉到机会,触发完成相应的动作,进行个性化的精准服务与营销,做到应时应景、正中客户下怀,这对于提高营销效率、客户感知肯定是大有裨益的,当然这里面还要注意让客户比较舒服的接受触点的服务,不要让客户觉得我们是在利用他们的隐私在做事情,这里面是讲究技巧的。
大数据在面向客户层面不能做的事情:
大数据的确能记录客户的各种属性特征、行为轨迹,这些数据也确实反映了客户的操作和使用行为,但是所思并不完全就是所想,客户的行为也不能完全反映其真实意图。
1、 大数据不能算出客户的创意和想象:大数据来源于现实,但是人类的许多想法并非来源于现实,创造性的思维与想象往往是天马行空、超越现实,因此《大数据时代》作者克托迈尔舍恩伯格直言:创意和想象,用大数据是算不出来的。
2、 大数据及时很智能也无法替代客户思维:大数据或许能帮助客户做出一些决策方案,但最终选择客户哪个方案、做出何种动作,最终决定权还是在客户自己手中。人类的思维过程、内心的真实想法是大数据不能够完全测算出来的。人类的思维、决策镶嵌在时间序列和社会背景之中,但数据是不能读懂这些背景的,也读不懂这些背景之后的一些潜规则,因而无法洞悉人类思维的浮现过程。即使是一部普通的小说,数据分析也无法解释其中的思路脉络,显见大数据是不能替代人类的思考的。
3、 大数据不能预测超越人类认知范围的事情:大数据的核心功能就是预测,但是大数据无法预测毫无先兆、超越人类认知极限的事情,这类事情通常被称为黑天鹅。大数据是基于历史数据来预测未来的,但当历史不可掌握时,大数据也是无计可施的;再者,大数据在采集、处理过程中难免被融入数据分析师的价值观和倾向性,这会让数据往往并非是原始客观的,会影响最后的分析结果,而真实的黑天鹅隐藏于无形之中,是很难被发现的;另外,著名思想、《黑天鹅:如何应对不可知的未来》的作者纳西姆塔勒布指出,随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越来越多,这些相关关系中,有很多都是没有实际意义的,在真正解决问题时可能将人引入歧途。
4、 大数据无法描述客户的感情:大数据另外一个局限性在于它很难表现和描述客户的感情。大数据在处理人类情感、社会关系、前后关联等问题的时候,表现往往不尽如人意。大数据只能告诉我们客户在做什么,而不能告诉我们客户在做的时候是怎么想的、背景是怎样的,或者客户在做的时候有什么样的情绪波动。所以,大数据往往是不能直达客户心智空间,理解客户拥有何种价值观的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02