京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小议大数据的“能”与“不能” _数据分析师
当下,我们正处于数据爆炸的时代,全球的数据量正在以每18个月翻一倍的惊人速度增长,世界正在高速数字化。大数据也是当下各行各业都在谈论的话题,某些数据分析师甚至扬言:如果可以实时、精确的捕捉一切数据,并且有足够高效的算法与储存设备,大数据可以分析并解决一切问题。窃以为,这样的说法太过绝对,现实情况并非如此。大数据并非是无所不能的。
笔者在这里试图从应用的角度分析一下电信行业大数据能做的和不能做的事情,而对于业务层面的能与不能。将留待后续文章再述。
大数据在面向客户层面能做的事情:
1、完善客户画像,洞察客户特征:拥有更全面的客户数据后,能更逼近客户的真实情况。大数据因其强大的数字记忆功能,在一定程度上能做到比客户自己还要更了解客户,具有读心术功能,这个容易理解;
2、发现行为模式的DNA,预测客户将发生的动作:法国数学家泊松说过:一旦我们承认人类行为是随机的,它突然之间就可以被预测了。《爆发》作者艾伯特拉斯洛巴拉巴西据此认为:依据泊松分布规律推断,人类行为93%是可以预测的。大数据的核心功能就是关联预测,比如识别离网客户在离网前的行为模式DNA,就能推测出所有在网客户在某个时期的离网率。类似的还有客户换机时间、偏好机型的预测等等。
3、识别客户需求偏好,开展个性化服务:还是围绕客户来说,大数据能发现客户的兴趣偏好、渠道偏好等,在规则引擎的实时触发作用下,相应的触点就能即时捕捉到机会,触发完成相应的动作,进行个性化的精准服务与营销,做到应时应景、正中客户下怀,这对于提高营销效率、客户感知肯定是大有裨益的,当然这里面还要注意让客户比较舒服的接受触点的服务,不要让客户觉得我们是在利用他们的隐私在做事情,这里面是讲究技巧的。
大数据在面向客户层面不能做的事情:
大数据的确能记录客户的各种属性特征、行为轨迹,这些数据也确实反映了客户的操作和使用行为,但是所思并不完全就是所想,客户的行为也不能完全反映其真实意图。
1、 大数据不能算出客户的创意和想象:大数据来源于现实,但是人类的许多想法并非来源于现实,创造性的思维与想象往往是天马行空、超越现实,因此《大数据时代》作者克托迈尔舍恩伯格直言:创意和想象,用大数据是算不出来的。
2、 大数据及时很智能也无法替代客户思维:大数据或许能帮助客户做出一些决策方案,但最终选择客户哪个方案、做出何种动作,最终决定权还是在客户自己手中。人类的思维过程、内心的真实想法是大数据不能够完全测算出来的。人类的思维、决策镶嵌在时间序列和社会背景之中,但数据是不能读懂这些背景的,也读不懂这些背景之后的一些潜规则,因而无法洞悉人类思维的浮现过程。即使是一部普通的小说,数据分析也无法解释其中的思路脉络,显见大数据是不能替代人类的思考的。
3、 大数据不能预测超越人类认知范围的事情:大数据的核心功能就是预测,但是大数据无法预测毫无先兆、超越人类认知极限的事情,这类事情通常被称为黑天鹅。大数据是基于历史数据来预测未来的,但当历史不可掌握时,大数据也是无计可施的;再者,大数据在采集、处理过程中难免被融入数据分析师的价值观和倾向性,这会让数据往往并非是原始客观的,会影响最后的分析结果,而真实的黑天鹅隐藏于无形之中,是很难被发现的;另外,著名思想、《黑天鹅:如何应对不可知的未来》的作者纳西姆塔勒布指出,随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越来越多,这些相关关系中,有很多都是没有实际意义的,在真正解决问题时可能将人引入歧途。
4、 大数据无法描述客户的感情:大数据另外一个局限性在于它很难表现和描述客户的感情。大数据在处理人类情感、社会关系、前后关联等问题的时候,表现往往不尽如人意。大数据只能告诉我们客户在做什么,而不能告诉我们客户在做的时候是怎么想的、背景是怎样的,或者客户在做的时候有什么样的情绪波动。所以,大数据往往是不能直达客户心智空间,理解客户拥有何种价值观的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24