京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小议大数据的“能”与“不能” _数据分析师
当下,我们正处于数据爆炸的时代,全球的数据量正在以每18个月翻一倍的惊人速度增长,世界正在高速数字化。大数据也是当下各行各业都在谈论的话题,某些数据分析师甚至扬言:如果可以实时、精确的捕捉一切数据,并且有足够高效的算法与储存设备,大数据可以分析并解决一切问题。窃以为,这样的说法太过绝对,现实情况并非如此。大数据并非是无所不能的。
笔者在这里试图从应用的角度分析一下电信行业大数据能做的和不能做的事情,而对于业务层面的能与不能。将留待后续文章再述。
大数据在面向客户层面能做的事情:
1、完善客户画像,洞察客户特征:拥有更全面的客户数据后,能更逼近客户的真实情况。大数据因其强大的数字记忆功能,在一定程度上能做到比客户自己还要更了解客户,具有读心术功能,这个容易理解;
2、发现行为模式的DNA,预测客户将发生的动作:法国数学家泊松说过:一旦我们承认人类行为是随机的,它突然之间就可以被预测了。《爆发》作者艾伯特拉斯洛巴拉巴西据此认为:依据泊松分布规律推断,人类行为93%是可以预测的。大数据的核心功能就是关联预测,比如识别离网客户在离网前的行为模式DNA,就能推测出所有在网客户在某个时期的离网率。类似的还有客户换机时间、偏好机型的预测等等。
3、识别客户需求偏好,开展个性化服务:还是围绕客户来说,大数据能发现客户的兴趣偏好、渠道偏好等,在规则引擎的实时触发作用下,相应的触点就能即时捕捉到机会,触发完成相应的动作,进行个性化的精准服务与营销,做到应时应景、正中客户下怀,这对于提高营销效率、客户感知肯定是大有裨益的,当然这里面还要注意让客户比较舒服的接受触点的服务,不要让客户觉得我们是在利用他们的隐私在做事情,这里面是讲究技巧的。
大数据在面向客户层面不能做的事情:
大数据的确能记录客户的各种属性特征、行为轨迹,这些数据也确实反映了客户的操作和使用行为,但是所思并不完全就是所想,客户的行为也不能完全反映其真实意图。
1、 大数据不能算出客户的创意和想象:大数据来源于现实,但是人类的许多想法并非来源于现实,创造性的思维与想象往往是天马行空、超越现实,因此《大数据时代》作者克托迈尔舍恩伯格直言:创意和想象,用大数据是算不出来的。
2、 大数据及时很智能也无法替代客户思维:大数据或许能帮助客户做出一些决策方案,但最终选择客户哪个方案、做出何种动作,最终决定权还是在客户自己手中。人类的思维过程、内心的真实想法是大数据不能够完全测算出来的。人类的思维、决策镶嵌在时间序列和社会背景之中,但数据是不能读懂这些背景的,也读不懂这些背景之后的一些潜规则,因而无法洞悉人类思维的浮现过程。即使是一部普通的小说,数据分析也无法解释其中的思路脉络,显见大数据是不能替代人类的思考的。
3、 大数据不能预测超越人类认知范围的事情:大数据的核心功能就是预测,但是大数据无法预测毫无先兆、超越人类认知极限的事情,这类事情通常被称为黑天鹅。大数据是基于历史数据来预测未来的,但当历史不可掌握时,大数据也是无计可施的;再者,大数据在采集、处理过程中难免被融入数据分析师的价值观和倾向性,这会让数据往往并非是原始客观的,会影响最后的分析结果,而真实的黑天鹅隐藏于无形之中,是很难被发现的;另外,著名思想、《黑天鹅:如何应对不可知的未来》的作者纳西姆塔勒布指出,随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越来越多,这些相关关系中,有很多都是没有实际意义的,在真正解决问题时可能将人引入歧途。
4、 大数据无法描述客户的感情:大数据另外一个局限性在于它很难表现和描述客户的感情。大数据在处理人类情感、社会关系、前后关联等问题的时候,表现往往不尽如人意。大数据只能告诉我们客户在做什么,而不能告诉我们客户在做的时候是怎么想的、背景是怎样的,或者客户在做的时候有什么样的情绪波动。所以,大数据往往是不能直达客户心智空间,理解客户拥有何种价值观的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16