京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的下一个前沿是什么_数据分析师
MGI(麦肯锡全球研究院)和麦肯锡商业技术办公室的报告显示,当今世界的信息量已呈爆炸式增长态势,大型分析数据集即所谓的大数据,将成为引发新一轮生产力增长、创新及竞争的关键基础之一。
多媒体的崛起,社交媒体及物联网所捕捉到的、与日俱增的信息量,将会使数据在可预见的未来呈指数性增长。
麦肯锡研究了五大领域的大数据美国医疗保健、欧洲公共部门、美国零售业、美国制造业及全球个人位置数据。对于每个领域,大数据都能创造价值。
例如,如果充分利用大数据技术,零售商就能使其营业利润率提高约60%以上。大数据在公共领域也有较大潜力可挖掘,如果美国医疗保健行业能够创造性地、有效地利用大数据以提升其效率及质量,那么每年就能创造出3000多亿美元的产值。欧洲的发达国家使用大数据后,政府管理人员仅在提升操作效率方面,就节省了至少约1000亿欧元(约合1490亿美元)的成本,这还不包括使用大数据减少舞弊和错误等。
此外,利用个人位置数据所提供服务的用户还可创造6000亿美元的消费者剩余。该研究提出了七大关键观点:
1.数据已深入各个行业及企业功能,目前已成为除劳动力和资本以外的又一重要的生产力因素。据估计,到2009年,美国所有行业中具有1000名以上员工的公司都至少拥有一个平均200兆字节的存储数据(是1999年美国零售商沃尔玛数据库规模的两倍)。
2.以下5种使用大数据的方法可创造价值。第一,大数据可通过信息透明化及更高效的数据利用,来释放巨大的价值。第二,随着组织以数据的形式创建并存储更多的交易数据,他们能从产品库存中收集每件产品更为准确详细的性能信息,从而发现可改善之处并提高其性能。一些骨干企业正使用数据收集和分析开展控制实验,以便能做出更好的管理决策。其他企业则正利用大数据进行低频预测及高频短时预测,以便及时调整经营杠杆。第三,大数据能更加细分用户群,从而定制更为准确的产品或服务。第四,复杂的分析能大幅改善决策的制定。第五,利用大数据可改善下一代产品和服务。例如,生产商可利用产品中嵌入的传感器获得的数据,创造更有新意的售后服务,如主动维护(指故障发生前或意识到会发生故障前所采取的预防性措施)。
3.大数据的使用将成为个人公司提升竞争力、促进增长的一个关键基础。从竞争力及获得潜在价值的角度来看,所有公司都应认真对待大数据。在大多数行业,类似的竞争对手及新市场进入者将利用数据驱动策略进行创新、竞争,并从深层次及实时信息中获取价值。
4.大数据的使用,将引发新一轮的生产力增长及消费者剩余。例如,我们预估,充分利用大数据的零售商能使其营业利润率提高约60%以上。大数据能为消费者、公司及组织带来可观的收益。比如,利用个人位置数据所提供服务的用户还可创造6000亿美元的经济剩余。
5.尽管大数据可跨部门使用,但我们将美国部门的历史生产力与这些部门从大数据中获得的潜在价值进行了对比(使用索引结合一些量化指标),结果发现机遇与挑战会因部门而异。计算机电子产品和信息部门、金融保险和政府,能从大数据的使用中获得更大的好处。
6.有些组织会缺少相应的会利用大数据的必备人才。到2018年,仅美国就会缺乏14万~19万数据分析专家,以及150万深知该如何利用大数据分析进行有效决策的管理人员和分析师。
7.想要完全挖掘大数据的潜力,就必须要解决一些问题。在大数据的世界需要建立有关隐私、安全、知识产权、甚至法律责任方面的政策。组织不仅需要将合适的人才与技术安排在合适的位置上,还需要构建工作流程及激励措施将来自数据源(经常来自第三方)的信息汇聚到一起。此外,激励措施也必须到位,以确保能实现这一点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16