京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谈谈网络时代大数据及分析起诉韩寒小实例
随着阿里巴巴的上市,马云成为中国首富,猫眼看人里关于阿里巴巴的大数据分析的内容层出不穷。大多是用耸人听闻的言论,指责阿里巴巴境外上市导致大数据外泄,影响国家安全,对中国经济运行造成不可估量的损失。
很多猫友从以往的常识和逻辑方面判断能够得出阿里巴巴的大数据并不影响国家安全的结论,但是,对于大数据概念认知比较少,评论起来无从入手。
本文希望用最朴实的语言描述大数据,让大家能对大数据有基本认识。同时,后面附大数据统计的应用实例:即通过大数据统计分析网友司马3忌对韩寒起诉的影响。
所谓数据统计,就是用统计学的方法分析概率和趋势
由于传统方法无法对每一个终端样本详细取样,导致很多经济社会数据只能通过抽样调查统计。
例如,收视率调查。电视台无法得到每户家庭的收看节目的数据,所以只能抽样调查。
在网络时代,每一个网络服务提供商不需要做抽样调查,而是建立庞大的数据库,记录一切用户的行为特征,用这些特征作为数据基础。这就是大数据,用不同的方式对这些数据进行提取、整理、分析的手段就是大数据分析。
最简单的例子就是你打开任何一款炒股软件,它都是基于大数据的。每只股票从上市起所有相关数字全部被精准记录,从无遗漏。
阿里巴巴的大数据是否会影响国家安全?
个人认为不会,并且大数据无法隐藏。原因如下:
1.阿里巴巴的大数据是每种产品的购买记录,只说明产品的销量趋势。
2.每个公司对自己的大数据是企业的核心资产,如美国任何投资者、美国国务院希望获得阿里巴巴的大数据,也需要通过法院的批文,即使拿到,企业也有权拒绝。美国国务院屡次索要用户资料以便反恐需要都被苹果拒绝。
3.大数据本身就没有办法隐藏,如阿里巴巴的产品销售情况是在每一个商品的展示页面清楚明白的呈现出来。只要会最简单的网络及编程技术,都可以编写软件,借助大型服务器矩阵,放出无数爬虫,对每个页面进行信息提取和整理,得到大数据。
举个例子:比如如果想获得猫眼看人的大数据,用20m光纤宽带约2天即可完成对整个论坛数据的镜像保存。
4.如中国政府认为被美国搜集了大数据,一样可以如前面所述,通过对美国亚马逊、facebook、推特等进行爬虫提取搜集信息得到美国的大数据进行反制。
接下来通过大数据分析 司马三忌起诉韩寒,对韩寒的影响。
可以看到在10月09日,如红圈所示,媒体的报道从之前的一平如水,到出现一波小高潮。韩黑是否觉得有点小激动呢?
嘿嘿,上图只是9月12日到10月11日的。我们换个图,看看最近半年的大数据。
从这张图就可以看出,司马三忌起诉韩寒对媒体的影响力。
红圈1是韩寒的后会无期宣传期间的媒体报道力度。
红圈3是司马三忌起诉的媒体报道力度。
那么,红圈2比红圈3的媒体报道力度更大。
红圈2是9月11日的媒体报道,那一天韩寒发生了什么事呢?
看下面的图就一目了然了:
原来司马三忌起诉的影响力还不如韩寒老婆生二胎,哈哈!
以上就是对大数据的介绍和分析,以及实例应用。
大数据是个好东西,只要随便挖掘数据,就可以让我们对事物的认知突破我们自己视野的局限,起码不会表现的很愚昧了。
例如很多韩黑认为司马三忌起诉韩寒,会给韩寒带来致命打击。
但大数据就告诉我们,我们的认知是局限在只上猫眼,而大数据挖掘整个互联网,互联网的大部分媒体关注国民岳父老婆生二胎更多一点。
同样,大数据也可以有利于作出决策,试着证明如下:
如很多脑残黑粉所臆想的,关于韩寒代笔的舆论铺天盖地,对韩寒造成很大打击而事实上,通过挖掘数据以韩寒代笔和韩寒 进行分析可以看到, 韩寒代笔的关注度(蓝线)始终是一条接近X轴的直线这说明韩寒代笔的质疑的声音基本没有变化,不变高,也不变低这也揭示了孜孜不倦的揭示韩寒代笔的这部分声音没有减少,没有增加而韩寒的关注度随着他的动向呈现高低起伏。
取韩寒关注度最低的点,关注指数为5720,韩寒代笔的关注指数为132,占总关注比例为2.308%
假如你是韩寒,或者韩寒的经纪公司,那么,你会得出如下结论:
1.对韩寒代笔的关注度占的比例只有2%
2.质疑韩寒的人是坚决的、持之以恒的,但他们的质疑并没有扩散。
那么,你会做如下论断和决策:
1.你改变不了质疑韩寒的人,他们过去会,未来也会坚持咬定韩寒代笔。
2.上述人群不会变多、也不会变少。
3.你不需要试图去改变,因为你的试图的成本和收益不成正比。
4.最好的办法就是由这些人去质疑吧,因为他们只占2%,相比任何一个明星的anti-fan,都不多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20