京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不仅要清楚如何收集数据,还要清楚如何创造数据
导读:企业每天都受到大量信息的冲击。这些信息由邮件、社交媒体、网站和移动应用等等生成,来自于它们业务的各个方面。
业界估计数据每年的增长率在30%到50%之间,对于许多企业来说,每年将增长上PB的数据量。问题显然不是缺少数据,而是缺少“正确”的数据。
根据埃森哲近期的调查显示,仅40%的管理者认为他们现有的分析应用能够识别有效数据,只有20%对现存分析应用支持的业务成果表示“非常满意”。毫不夸张的说,这样的结果是很不令人满意的。
拥有正确的数据能够帮助企业制定决策。然而,获取正确的数据却要求能够搭建、配置、装备和升级应用的基础设施。应用程序在必须满足功能需要的同时,还需要提供能够解决企业关键问题的数据。
《埃森哲技术视野2013》是一份关注企业IT未来的报告,该报告认为企业满足自己对于“数据分析设计”的需要是公司能够利用技术和软件提高竞争力、协作能力和业务成果的主要方式之一。
很过公司头脑中还没有具体的问题就去捕捉数据。所以当把数据作为战略性业务决策的投入来分析时,比如进入一个新的市场或为新产品估价,信息中断的问题就会显现出来,导致错失良机。
企业面临的已经不再是技术障碍,而是如何富有战略前瞻性地组织正确的问题。该结果就是数据供应链的第一步,应用程序服务的不仅是用户,还有业务。
要想把应用设计的焦点从功能为主转变到分析为主,CIO可以采取如下措施。
很多软件供应商正在准备通过应用编程接口(API),允许用户更容易地从软件产品,包括软件应用中提取数据。公司因此理所当然地要考虑它们应该从系统中收集哪些数据,才能解决公司面临的最重要的问题。
一些公司也在为它们的定制应用增加设备,设计团队收集交易、活动或日志等信息并将其制成报表,使用传感器技术填补出现的数据间断。
例如,UPS开发了一种应用于车内传感器和手持电脑的系统,追踪船只信息和车辆行驶情况。UPS发现,左转弯(在美国)会延缓送货、增加燃油成本。这一信息的发现为UPS每年节省了九百万加仑的燃料。
培育和收集服务于销售和市场的信息能力代表着公司抓取数据的机会。这些数据能够解决很多关于消费者的长时间没有解决的问题。
2020年产业评估预计关联设备将会达到300亿到500亿,那时一定会产生大量的来自于社交媒体、移动应用和传感器技术的数据以及非结构化数据。但是公司需要从数据中选取正确的数据,之后启动获取数据的程序。
一旦发现正确的数据,就应该像在一条流水线上处理来自多个供应商的汽车零件一样处理它们。
数据被过滤到供应链之后,应用程序就可以对它进行操作,增加其他数据、用更新的数据将其升级、将其转变成新的产品。
通过目的明确地收集数据,公司能够获得更好的数据和更深刻的洞察力。之后可以周期性地回顾公司面临的问题,并随着业务情况和战略命令的变化提取新的数据。
这意味着将企业文化向以洞察力为驱动的方向转变。这需要将业务功能和IT结合,并鼓励收集更好更即时的数据。
通过部署这些功能,业务将逐渐变为完全以洞察力为驱动。这意味着发展超越用户功能的应用和产品,让它们积极地满足数据分析的需要,以便于不仅能够生产更多的数据,还能生产能够解决主要业务问题的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31