
13个免费的数据可视化分析工具分享_数据分析师
1、DataWrangler
斯坦福大学可视化组(SUVG)设计的基于web的服务,以你刚来清理和重列数据。点击一个行或列,DataWrangler 会弹出建议变化。比如如果你点击了一个空行,一些建议弹出,删除或删除空行的提示。它的文本编辑很cooool。
2、Google Refine
用户在电脑上运行这个应用程序后就可以通过浏览器访问之。这个东西的主要功能是帮用户整理数据,接下来的演示视频效果非常好:用户下载了一个 CSV 文件,但是同一个栏中的同一个属性有多种写法:全称,缩写,后面加了空格的,单数复数格式不一的……但是这些其实都代表了同一个属性,Google Refine 的作用就是帮你把这些不规范的写法迅速统一起来。
可视化应用与服务(Visualization applications and services)
这些工具提供了不同的可视化选项,针对不同的应用场景。
3、大数据可视化魔镜
大数据魔镜可视化分析软件(简称“魔镜”)是一款面向企业的大数据商业智能 产品,处于国内领先水平。通过魔镜,企业积累的各种来自内部和外部的数据, 比如网站数据,销售数据,ERP 数据,财务数据,大数据,社会化数据,mysql 数据库等,都可将其整合在魔镜进行实时分析。魔镜为企业提供从数据清洗处理、 数据仓库、数据分析挖掘到数据可视化展示的全套解决方案,同时针对企业的特 定需求,提供定制化的大数据解决方案,从而推动企业实现数据智能化管理,增 强核心竞争力,将数据价值转化为商业价值,获取最大化利润。
4、R 项目
R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统计相关的软体,但也有人用作矩阵计算。其分析速度可媲美GNU Octave甚至MATLAB。
5、Google Fusion Tables
Google Fusion Tables被认为是云计算数据库的雏形。还能够方便合作者在同一个服务器上分享备份,email和上传数据,快速同步不同版本数据,Fusion Tables可以上传100MB的表格文件,同时支持CSV和XLS格式,当然也可以把Google Docs里的表格导入进来使用。对于大规模的数据,可以用Google Fusion Tables创造过滤器来显示你关心的数据,处理完毕后可以导出为csv文件。 Google Fusion Tables的处理大数据量的强大能力,以及能够自由添加不同的空间视图的功能,也许会让 Oracle,IBM, Microsoft传统数据库厂商感到担心,Google未来会强力介入数据库市场。
6、Tableau Public
7、Many Eyes
8、Impure
9、Zoho Reports
10、Exhibit
11、JavaScript InfoVis
12、VIDI
13、Choosel
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10