京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:发掘信息技术革命新金矿_数据分析师
自18世纪以来,人类经历了三次重大的技术革命。前两次技术革命,通过有形实物资本积累推动的资本深化进程,构成了经济增长的主要动力。
信息技术革命的核心技术是计算机技术和基于计算机技术的互联网。然而,在人类生产、贸易和生活方式的改造上,信息技术革命的典型特征是什么呢?如果说是互联网普及后整个经济社会的网络化,现在的互联网似乎仅仅是第二次工业革命中经济社会“网络化”的延续。更为关键的是,如果这是一场革命,我们应该观察到单位劳动时间上的产出增长。根据很多研究,,上世纪90年代以来的单位产出增速实际上要大大慢于第二次工业革命时期。
与如今IT界普遍的技术乐观情绪不同,经济学界看起来更想提出一个冷静的问题:信息技术革命是“革命”吗?技术革命并非简单的技术发明,而是这种发明在经济中的广泛运用,并最终全面、彻底取代一切陈旧的东西。对此,前两次革命中,我们都可以观察到一个重要的现象:技术发明与这种技术的广泛运用之间存在明显的时滞——短则几十年,长则上百年。
既然技术的普遍运用要滞后于技术发明本身,那么,以计算机、尤其是互联网为核心技术发明的信息技术革命究竟何时才能在经济、社会发展中引发真正的革命呢?回答这个问题的前提是找到信息技术革命改造人类生产、贸易和生活方式的典型特征——“用数据(data)生产信息(information)和知识(knowledge)”。
现代电子通讯技术和网络与工业革命时期的电报电话技术及经济社会网络存在根本性的不同:虽然都是技术进步推动的网络化,但前者除了在网络化的程度上远非后者可比之外,更是通过从模拟技术到数字技术的转化,实现了数字化(digitalization)——有人称之为“数字革命”。随着传感技术、存储技术和计算技术的发展,在现代网络中,所有相互作用都会留下可以存储、处理的数字足迹。这些数据在规模和种类上远远超出了常规技术能够存储和处理的能力,从而被称作所谓的“大数据”。
“大数据”是近几年来愈发时髦的概念。虽然并无统一定义,但其特征可以用四个“V”来界定,即数据量大(Volume)、数据处理速度快(Velocity)、数据类型多样(Variety)、数据价值(Value)。经济金融理论界和实务界,对大量(Volume)、实时(Velocity)数据的处理和分析并不陌生,但大数据在规模和速度上与以往的数据类型存在量级的差异,更为不同之处在于数据类型的多样性:大数据需要处理的对象不仅包括传统的结构化数据(如股市交易时间序列、GDP等),还包括许多非结构化数据(如视频、音频、文本信息等),后者的数据规模和增长速度远高于前者,且处理这两类数据的技术和理论都是不一样的。
如同几百年前欧洲人“发现”了新大陆(26.99, 0.78, 2.98%)和新大陆上令人垂涎的金矿资源一样,数字革命的结果就是新大陆上的新金矿——大数据。在所有人和物都可能被网络化,并在数字空间留下数字足迹的时代,需要始终记住的一个基本观念是:数据是资产。不过,获取大数据的目的首先在于通过分析产生信息,而从数据到信息的过程需要有IT技术的支持,这包括:数据存储和查询技术、数据处理技术、数据应用技术等。
与以往以有形的实物资本积累推动的资本深化和“实物资本表现型技术进步”不同,信息技术革命的“革命性”集中表现在数据资产大规模累积、并变成能够直接加入到生产函数中的数据资本的过程。从数据资产的积累到数据资本的形成,至少从三个方面形成了降低成本、提高生产率的效应:
第一,信息透明度的可得性大大提高,从而极大地降低交易成本,使得企业识别客户、管理内部流程的效率得到极大提高,宏观经济的管理能力也将出现飞跃式上升。在零售业、电子商务和制造业,客户分层、客户体验、量身定制正在成为潮流;而在宏观经济层面,随着实时、大量数据的产生和运用,过去基于月度、季度、甚至年度的过时经济预测将会变成对经济总体状况实时把握的即时播报。
第二,企业和社会的风险管理能力得到极大的提高。在企业层面,风险管理能力的提高显然是降低错误投资的概率、提升生产率的有效手段;在宏观经济层面,一个典型的例子是如果能够利用大数据,将雷曼兄弟公司这样的企业视为一个网络关键节点或者连接不同子网络的关键“桥”(bridge),来分析和把握其系统重要性,或可避免危机带来的巨大损失。
第三,正在并将继续形成新的生产、生活和交易方式。贸易和生产制造领域已经演化出了以网络为基础新的营销、仓储、供应链和市场组织形式,而基于“实体经济”的金融业也在发生深刻变革。例如,过去几年我国诞生的所谓“互联网金融”,如果摒弃其中“网上高利贷”的泡沫,可以发现,诸如阿里巴巴[微博]这样的企业正是利用了电子商务过程中产生的大数据,让这些数据成为企业增殖的数据资本。
在数据资产的积累和数据资本形成过程中,两个自然的问题是:谁拥有这样的数据资产?谁能够将数据资产变成数据资本?从国家层面看,这涉及到21世纪全球实力格局的再造。根据麦肯锡的统计,2010年北美、欧洲、日本新储存的数据分别达到3500、2000和400 拍字节(petabyte),我国只有250拍字节。作为全球名义GDP的第二大经济体,我国在数据资产的积累方面处于大大落后的状态。数据处理和分析能力是数据资产变成数据资本的前提,就此能力而言,人才是重中之重。
未来是属于大数据时代的。数据资产的积累、数据资本的形成及其推动的数据资本深化和“数据资本表现型技术进步”将成为人类经济社会发展的新大陆。在《万历十五年》中,黄仁宇说中国人不擅“数目字管理”。希望在这一次,我们能够吸取教训。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16