京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新媒体大数据能给中国带来什么_数据分析师
新媒体的迅猛发展产生了海量数据。这些数据使我们能够更好地洞察社会各方面的细微变化。深入挖掘新媒体大数据蕴含的价值,将有力助推中国经济转型——
作为大数据的主要来源之一,新媒体的迅猛发展导致用户电脑浏览记录、手机通信记录、网页浏览习惯、微博使用习惯、手机GPS定位跟踪记录等数据大量累积。相关统计显示:2000年,全世界存储的信息中只有1/4是数据信息;而目前,这一比例高达98%。业内专家预计,大数据很有可能会推动产生一个新的时代。
有待挖掘的重要资源
新媒体大数据具有解析度高、广度大、即时交互等诸多特点,是经济运行中的重要资源。
英国剑桥大学心理测量学中心研究员米哈乌·科辛斯基近期与他人联合主持的一项研究认为,仅仅使用公开的Facebook“赞”(Like)信息,也能瞬时生成极为详尽的用户心理-人口特征资料,包括种族、性格、智商分数、政治观点和宗教信仰等有效的个人统计信息。2013年,麻省理工学院和鲁汶天主教大学的科学家研究了150万用户15个月内的匿名电话记录,结果发现,只需要移动通讯的4个时间、地点等相关数据,就可以基本确定打电话者的身份。可见,如同显微镜一样,新媒体的大数据能够突显出经济运行中极其微小的细节;特别是社交网络和互联网公司收集的数据,呈现出很强的身份特征。将这些数据与客户个人信息相结合,就可以生成一系列关于客户可能需求的“推测数据”。
相对于传统媒体,新媒体具有强大的消解力量,包括消解传统的电视、广播、报纸等媒体之间的边界,消解国家之间、社群之间、产业之间的边界,消解信息发送者与接收者之间的边界等。新媒体数据的这一特性使我们能够不拘于一隅地了解整个人类社会系统的情况。中国广大的地域、庞大的人口、差异化的区域经济结构、多样化的生活文化习惯,更进一步拓展了新媒体数据的广度。
此外,新媒体大数据还显示出即时交互的特征。例如,微博平台能够形成完整的营销闭环,从消费者开始注意某种商品,到产生兴趣、寻找相关信息,再到达成购买并和周围人分享购物体验。在社交媒体的媒介环境下,用户口碑得以在短时间内进行裂变式传播,每个转发的用户都成为信息的传播者和被影响者,极易形成争抢轰动效应,引起购买决策。
著名商业期刊《哈佛商业评论》和《MIT斯隆管理评论》都曾以“大数据”作为主题,畅想大数据时代的企业管理。众多学者和企业家得出的结论是:在未来,数据会像土地、石油和资本一样,成为经济运行中的根本性资源。从更深的层面看,新媒体大数据不仅本身是重要的资源,还可以通过与其他数据资源广泛链接,促使其他数据资源得到更有效的开发和利用。
助推中国经济转型
中国正处于经济转型的关键时期,深入挖掘新媒体大数据中蕴含的价值,将有力助推中国经济的转型。
长期以来,中国扩大内需的动力主要来自城镇化;未来十多年,中国将有上亿人口融入城市,这是极为复杂的经济和社会变化过程,需要新的协同发展政策。通过分析大数据,可以对城市进行更为合理的规划与管理,有效缓解中国城镇化过程中面临的住房、教育、交通等诸多难题。例如,2010年,美国东北大学和哈佛医学院的科学家随机选取欧洲某国10万手机用户,追踪他们在6个月中发生的数据,旨在探寻人群活动的范围和移动模式。
服务业是未来中国经济增长的支撑点和就业容纳器。作为服务业的重要组成部分,由于长期缺乏有效的还本付息保证和规范的财务会计报表,小微企业普遍存在融资难题,限制了进一步发展。阿里巴巴的小额贷款业务通过将大量的基础商业数据、交易数据、信用数据结合起来进行风险分析,为解决小微企业融资难题提供了思路。在金融业,对冲基金也已经开始从社交媒体提取市场“情绪”信息,利用Twitter、Facebook、聊天室和博客用户发出的海量消息开发交易算法,并据此操作市场。
传统行业转型升级是中国经济结构调整的重心。在零售业,某些电商平台已经开始通过交易数据分析,帮助零售商实时掌握销售动态,迅速调整库存,以制订更加精准有效的营销策略;同时,通过将销售信息与买卖方的年龄、性别、地址、爱好等个人特征信息相匹配,可以预测市场行情,引领消费趋势。传统行业的运作方式因此得到深刻改变,行业运作效率大幅提高。
中国经济转型离不开战略新兴行业的成长,而大数据被认为是信息技术下一次重大突破的重要方向。在以前历次信息革命中,中国主要扮演着学习者、跟随者和参与者的角色;在这次突破中,中国有可能在诸多领域取得领先地位。其一,中国的人口结构、经济规模以及新媒体的迅猛发展,决定了相关大数据的规模,为未来大数据研究提供许多创新角度;其二,中国在新媒体大数据开发和应用方面拥有广阔平台,有利于迅速培养领军人物——相信通过企业、科研院所和高等学校之间的紧密合作,中国有望站在大数据领域的技术最前沿。
尽管目前我们对于新媒体大数据的开发、利用已经取得一定进展,但相对于其潜在价值而言远远不够,未来仍需采取针对性的促进措施。例如,设计和创建一个数据共享的体系架构,在保护个人隐私基础上实现不同机构间数据的流动;发展处理新型数据的特定技术,培养大量数据分析人才,从而可以高效、精准地处理海量的模糊信息;构建完整的新媒体大数据生态产业链,实现数据的采集、存储、组织、查询、管理和应用的良性循环。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20