京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对大数据的认识不应盲目跟风_数据分析师
由于大数据技术发展迅速,一些囫囵吞枣的浅知误见也随之流传,如不及时纠正,将造成对大数据先入为主的误区,影响经济社会发展。
近年来,大数据在我国得到一致重视,各行各业兴起了一股重视大数据、应用大数据的热潮。这种全民迅速接受新生事物的现象,反映了中国经过改革开放,现代化意识深入人心的可喜状况,令人鼓舞。但是,由于大数据技术发展迅速,一些囫囵吞枣的浅知误见也随之流传,如不及时纠正,将造成对大数据先入为主的误区,影响经济社会发展。当前国内十分流行的《大数据时代》(维克托·迈尔-舍恩伯格等著,浙江人民出版社,2013年,以下简称《时代》)中提出了三个存在严重谬误的观点,特此指出,以期引起注意。
“不是因果关系,而是相互关系”?
《时代》一书的主要观点之一是,大数据时代“不是因果关系,而是相互关系”。其实,早在18世纪,英国怀疑论者休谟就指出,“不但我们的理性不能帮助我们发现原因和结果的最终联系,而且经验给我们指出它们的恒常结合以后,我们也不能凭自己的理性使自己相信,我们为什么把那种经验扩大到我们所曾观察过那些特殊事物以外。我们只是假设,却永远不能证明,我们所经验过的那些事物必然类似于我们所未曾发现的那些对象。”
《时代》一书将这一早已提出几个世纪的观点,作为大数据时代的新概念,不仅陈旧,而且错误。因为,简单地说大数据时代“不是因果关系,而是相互关系”,说明作者不了解因果关系本身也是一种相互关系,即原因与结果前后相继的相互关系,因此将因果关系归结为相互关系并不比因果关系本身更有内涵,实际上,这甚至是一种同义反复。
正确的观点应该明确因果关系是一种什么样的相互关系,而这一点经过20世纪自然科学和数理哲学的研究已经有了更深刻的认识。计算机的发明,使得人们开始从计算机语言表达、传递信息的角度来理解知识的起点。大数据时代的到来,使得人们豁然开朗。
经济学者李德伟教授在《时代》中译本发表之前,就已提出大数据时代不再强调因果关系,也不是简单地将因果关系归为相互关系,而是精确地指出客观事物运动序列之间存在同构关系,特别是人类认识与外部客观事物之间存在对应的、同构的关系,信息的表达、传输和存储就是一种同构关系,也就是说,外部客观事物运动与人的主观认识都是客观世界的事物现象,是协调性的、一一对应的相互关系,主观认识映像只是承载、传递外部客观事物现象的一种符号系统。无论是从人自身悟出来,还是从外部经验事物抽象出来,都是同构的、对应的关系。
“不是随机样本,而是全体数据”?
《时代》一书认为大数据时代“不是随机样本,而是全体数据”,认识事物不再是从随机抽取的部分样本,而是从全部数据出发。这种说法忽视了全部与部分的辩证关系。人类在有限的时间内不可能穷尽事物的全部,绝对真理只能在人类前后相继的、永远不会停止的认识过程中实现。任何事物的发展总是有过去、现在和未来,现在的是现在,未来的尚未出现,全部案例不可能在有限时间内达到,认识也永远不会完结。未来的与过去和现在相比还是无穷大的。正因为如此,波普尔才提出,“全称命题不可证实,只能证伪。”
实际上,过去的小数据时代的抽样调查方法与现在的大数据方法相比,只能说是大数据时代可以用更为精确的、全面的数据,以包含更大因素的仿真模型来追踪、分析模拟现实,取得比过去更为精确的认识结果。尽管如此,与全体相比,已经认识的永远是少数,误差、错误还是不能完全消除。例如,通过人口普查分析现在中国人具有什么特点。不要说全部认识现有13亿人口的全部属性不可能(因为事物属性有无穷层次),即使说能够完全认识现有13亿人口全部属性,也不意味着过去、未来的中国人,也能够全部认识。未来的中国人与已经认识的现有中国人相比还是无穷大。因此,大数据与小数据相比只是以巨量的、全面的、即时的数据来认识事物,但是要掌握全体数据在有限时间内总是不可能的。
“不是精确性,而是混杂性”?
《时代》作者说大数据时代“不是精确性,而是混杂性”,意指小数据时代是讲究精确性,大数据时代因为掌握了大量数据可以不再拘泥于精确性,而是依靠大数据比较模糊地行动。这显然是错误的。因为在小数据时代能够掌握精确的小数据,但是大多数数据却被遗漏、舍弃,认识的结果就无法实现精确、全面,真理和错误的边界也不是很清楚,这时的认识是模糊的、有偏差的。在大数据时代,因为掌握了更为全面的数据,可以在更大的范围认识事物,因此,能够更为准确、量化,以至于对一些中间模糊区域也可以得到更为准确的认识,其精确度和模糊度、误差本身都更为精确量化。例如,在计算机信息系统中,发布更多的信息,通过反复比对、纠错机制,降低噪音,到达精确度。这一点在人类的认识活动中本来就是这样做的,“耳听为虚”就以“眼见为实”来纠错,小数据一两个来回不可能正确,反复多次大数据比对,就能达到越来越高的精确度,误差率就越来越小。
中国人口世界第一,信息产业市场最大,最有机会发展信息化、大数据和智慧化产业。但中国目前在对大数据的认识上有一种盲目跟外国之风的倾向。对于国外大数据理论,我们应以批判的眼光保持清醒的认识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06