
大数据技术的发展历程及其演化趋势_数据分析师
最早提出词汇“Big Data”的是2011年麦肯锡全球研究院发布的《大数据:下一个创新、竞争和生产力的前沿》研究报告。之后,经Gartner技术炒作曲线和2012年维克托·舍恩伯格《大数据时代:生活、工作与思维的大变革》的宣传推广,大数据概念开始风靡全球。
基于Web of Science数据库中1994年后涉及大数据概念的4495篇文献,采用Citespace知识图谱工具,通过热点关键词和高被引文献分析,能够勾勒出大数据技术从萌芽到成熟的发展历程。
上世纪90年代至本世纪初,是大数据发展的萌芽期,处于数据挖掘技术阶段。随着数据挖掘理论和数据库技术的逐步成熟,一批商业智能工具和知识管理技术开始被应用,如数据仓库、专家系统、知识管理系统等。此时,对于大数据的研究主要集中于“Algorithms”(算法)、“Model”(模型)、“Patterns”(模式)、“Identification”(识别)等热点关键词。
大数据发展的突破期是2003至2006年,处于围绕非结构化数据自由探索阶段。非结构化数据的爆发带动大数据技术的快速突破,以2004年Facebook创立为标志,社交网络的流行直接导致大量非结构化数据的涌现,而传统处理方法难以应对。此时的热点关键词较为分散,包括了“Systems”(系统)、“Networks”(网络)、“Evolution”(演化)等,高被引文献也很少,说明学术界、企业界正从多角度对数据处理系统、数据库架构进行重新思考,且尚未形成共识。
2006至2009年,大数据技术形成并行运算与分布式系统,为大数据发展的成熟期。Jeff Dean在BigTable基础上开发了Spanner数据库(2009)。此阶段,大数据研究的热点关键词再次趋于集中,聚焦“Performance”(性能)、“CloudComputing”(云计算)、“MapReduce”(大规模数据集并行运算算法)、“Hadoop”(开源分布式系统基础架构)等。
2010年以来,随着智能手机的应用日益广泛,数据的碎片化、分布式、流媒体特征更加明显,移动数据急剧增长。
近年来大数据不断地向社会各行各业渗透,使得大数据的技术领域和行业边界愈来愈模糊和变动不居,应用创新已超越技术本身更受到青睐。大数据技术可以为每一个领域带来变革性影响,并且正在成为各行各业颠覆性创新的原动力和助推器。
2013年5月,麦肯锡全球研究所(McKinsey Global Institute)发布了一份名为《颠覆性技术:技术进步改变生活、商业和全球经济》的研究报告。报告确认的未来12种新兴技术,有望在2025年带来14万亿至33万亿美元的经济效益。令人惊讶的是,最为热门的大数据技术却未被列入其中。麦肯锡专门解释称,大数据已成为这些可能改变世界格局的12项技术中许多技术的基石,包括移动互联网、知识工作自动化、物联网、云计算、先进机器人、自动汽车、基因组学等都少不了大数据应用。
2014年5月,美国白宫发布了2014年全球“大数据”白皮书的研究报告《大数据:抓住机遇、守护价值》。报告鼓励使用数据以推动社会进步,特别是在市场与现有的机构并未以其他方式来支持这种进步的领域;同时,也需要相应的框架、结构与研究,来帮助保护美国人对于保护个人隐私、确保公平或是防止歧视的坚定信仰。2014年4月,世界经济论坛也以“大数据的回报与风险”的相近主题发布了《全球信息技术报告(第13版)》。报告认为,在未来几年中针对各种信息通信技术的政策甚至会显得更加重要。在接下来将对数据保密和网络管制等议题展开积极讨论。全球大数据产业的日趋活跃,技术演进和应用创新的加速发展,使各国政府逐渐认识到大数据在推动经济发展、改善公共服务,增进人民福祉,乃至保障国家安全方面的重大意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27