京公网安备 11010802034615号
经营许可证编号:京B2-20210330
历史上的文学大数据分析_数据分析师
虽然大数据概念近些年才热起来,但早在19世纪,人们就见到了文学作品的定量分析的身影。
2014年7/8月号的《美国科学家》杂志发表了Brian Hayes的文章《文学与大数据一相逢》。他说,虽然大数据概念近些年才热起来,但早在19世纪,人们就见到了文学作品的定量分析的身影。
在计算机尚未问世时,英国统计学家G. Udny Yule和C.B. Williams就尝试过如何利用句长的差异来表征不同的文学风格,识别不同的作者。1964年,出现了史上第一个主题为“文学数据处理”的学术会议,参会者有150人,讨论题目包括“计算文体学”,还有在计算机辅助下就弥尔顿对雪莱之影响作出估计。更早的时候,Frederick Mosteller和David L. Wallace就曾对《联邦党人文集》中常见词的词频(例如also、an、by、of)进行统计分析,试图确定哪些文章是汉密尔顿写的,哪些文章是麦迪逊写的。
Brian Hayes特别想介绍的是19世纪美国的两位“数字人文学”先驱人物。一位叫Thomas Corwin Mendenhall(1841~1924),是科学家,曾任印第安纳州罗斯理工学院的院长、美国国家科学院院士和美国科学促进会会长。1887年,他在《科学》杂志发表一篇文章《文章的特征曲线》。他认为,正如光谱线的模式可以表明存在着某化学元素一样,通过“词谱”或“特征曲线”也能表征一篇文章。他以狄更斯的《雾都孤儿》和萨克雷的《名利场》为研究对象,看看两人的“词谱”差异大不大,结果发现,差异不足以区分开两个作者。
另一位先驱人物叫Lucius Adelno Sherman(1847~1933),他的博士论文题目是《古英语诗歌“猫头鹰与夜莺”的语法分析》,从中可以看出他喜欢定量研究。例如,他统计了这首诗歌中用了多少介词、连词和否定式表达。1893年,Sherman发表了一部著作《文学分析学:关于如何对英语散文与诗歌进行客观研究的手册》。《科学》杂志发表过一篇书评,称此书是“划时代”的作品。在书里,他想做的不仅仅是通过定量分析来区分作者,如Mendenhall所尝试过的,而且涉及更多内容。比如,他在讲授英语文学演变的过程中,注意到了一桩事实:从14世纪的诗人乔叟到17世纪的莎士比亚,再到19世纪的爱默生,文学家们写出的句子越来越简单,摆脱了过去那种“凝重”和繁复。他从每个作家的作品中抽取500个句子,统计其平均句长。16世纪初的Robert Fabyan平均句长为63个单词,19世纪的爱默生平均句长只有20.5个单词。
他在搜集基础数据方面是下了苦功夫的,比如某个暑假里,他花了三周的时间,从麦考莱的五卷本《英国史》中整理出了4万多个句子中的单词。当然,有学生给他帮忙,因为他是教授嘛。
按现在的标准来看,这些数字人文学的先驱所做的工作都很简单,也不是那么成功,但是其开拓之功是不容否认的。有先进信息技术的助力,相信21世纪的数字人文学研究一定能别开生面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20