
叩开大数据机遇之门_数据分析师
大数据,顾名思义就是海量数据的形象描述。从技术角度来说,大数据就是对海量数据的采集、存储、分析、整合、控制,以及与之相关的技术与产业,其特点是数量大、速度快、多样性、真实性。大数据是座金矿,其诱人前景在于通过数据的处理来挖掘其中的价值,帮助政府、企业、社会做出更加明智的选择,从而少走弯路、节省成本、提高效率。
大数据的来龙去脉
大数据2009年开始在互联网信息技术行业流行开来,2012年美国将“大数据战略”上升为国家战略,目前世界上许多国家均已推行大数据战略。
人们对于海量数据的挖掘和运用,作为云计算、物联网之后信息技术行业又一重大技术革命,也有人将大数据看成第三次浪潮的华彩乐章。当然,大数据并非单纯指互联网上所发布的信息,而是因互联网和信息行业的发展而引起人们关注,是互联网发展到当前阶段的一种表象或特征。云计算为大数据提供了处理手段。盘活大数据资产,是大数据发展的核心议题,也是云计算内在的灵魂和必然的升级方向。
在以云计算为代表的技术创新背景下,企业内部的经营交易信息,物联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,这些原本很难收集和使用的海量数据变得可以掌握和利用了。
大数据与云计算的关系形象地说就像一枚硬币的正反面。大数据的获得不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法,它必然无法用单台的计算机进行处理,必须采用分布式架构,需要数十、数百、甚至数千的电脑分配工作,必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。因而,大数据是对海量数据进行分布式挖掘,需要计算机网络新处理模式、具有更强洞察发现力和流程优化能力、高增长率和多样化的信息资产。
从海量数据中筛选出有用的信息是一场革命,这对信息网络和数据处理能力都是巨大的挑战。大数据的战略意义不在于掌握庞大的数据信息,而在于如何对其进行专业化处理,并将正确的信息在正确的时间交给正确的人手中,才能实现其价值和效益。加工能力是大数据产业增值的核心竞争力,也是大数据产业实现盈利的关键。
大数据的应用前景
撬动地球需要一个支点,而大数据就是一个理想的支点。微软通过跟踪智能建筑的取暖器、空调、风扇以及灯光等积累下来的大数据,优化能源利用,实现智能化运营,可以节约40%的能源。
大数据预示着生产率增长和新一轮消费浪潮的到来。通过对大数据开发利用能够催生新的业态,进而可拓展成为战略性新兴产业。
由于人类90%以上的行为能够通过有效的数据分析而进行预测。随着信息技术的迅猛发展,互联网数据的价值从量变到质变,能够直观地呈现经济社会运行的规律,这样人们的决策将日益基于大数据作出,而并非基于经验和直觉,决策的科学性、准确性得以大幅提升。在消费行业、金融服务、食品安全、医疗卫生、电子商务、军事、交通、环保、气象等众多领域,大数据都具有广阔的应用前景,并产生巨大的经济社会价值和产业发展空间。
尤其在服务领域,通过用户行为分析实现精准管理、科学决策和人性化服务是大数据的典型应用。大数据已经成为与物质资产和人力资源相提并论的重要生产要素,企业利用大数据可以优化人力、物力资源的配置,创造更大的价值。今后企业能否取得成功,从宏观上来说将取决于管理层是否能够制定符合自身的大数据战略,取决于能否充分掌握并用好有关的大数据。
显然,大数据背后隐藏着巨大的利益,它对提高生产效率、降低经济社会运行成本、提升政府治理能力以及维护国家安全具有重要作用。
大数据的健康发展
我国是数据大国,但还不是数据强国,要实现由大变强,就应抓住大数据发展机遇。
——将发展大数据上升为国家战略,加强顶层设计,完善管理体制机制,制订大数据的技术标准和规范,通过战略规划和制度设计,整合政府数据、行业数据、企业数据等,建立全国统一的网络数据中心,规划好大数据健康发展的路线图。
——着力发展自主芯片、操作系统、数据库等核心技术、关键技术,以数据分析技术为核心,推动与云计算、物联网、移动互联网等技术的融合。
——面向大数据应用,加强网页搜索技术、知识计算(搜索)技术、知识库技术等核心技术的研发,开发出高质量的单项技术产品,并与数据处理技术相结合,为实现商业智能服务提供技术支撑。
——面向医疗、能源、金融、电信、流通等数据量大的领域,培育形成一批具有较高集成水平、较强市场能力的大数据解决方案提供商,为大数据在各行业领域的应用提供成熟解决方案,推动数据应用。
——推动大数据立法,制定涉及个人隐私、商业秘密和政府保密数据采集使用和保护的有关法律法规,规范数据拥有者、使用者、管理者等各方的职责,完善数据资源标准,依法保障数据安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10