
广点通背后的大数据技术秘密_大规模主题模型建模及其在腾讯业务中的应用(附PPT)一
12月14日,腾讯广点通高级研究员靳志辉在2014中国大数据技术大会上发表演讲,题为《Peacock: 大规模主题模型及其在腾讯业务中的应用》。腾讯广点通高级研究员靳志辉(Rickjin)所在的广点通部门,承接的流量一天接近150亿,他希望用技术帮助腾讯更好地处理这些流量,具体而言就是通过大规模主题模型学习系统 Peacock找出用户在网络数据深层的密码。“我们觉得互联网需要挖掘长尾的语义,主题模型能够突破传统处理的一些限制挖掘数据里面深层的隐含的语义。以下为作者演讲实录。
相关阅读:
21页PPT重磅发布:Mariana——腾讯深度学习平台的进展与应用
33页PPT|腾讯社交网络的大数据建模框架探索报告
重磅推荐:129页PPT讲述移动时代创业黄金法则 via:腾讯企鹅智酷
重磅!50页PPT揭秘腾讯大数据平台与推荐应用架构
36页PPT│大数据分析关键技术在腾讯的应用服务创新
大家好,我来自腾讯的效果广告平台部,参与开发的广告平台是广点通,广点通目前是腾讯最大的效果广告平台,每天承接的流量接近150亿PV,未来其实应该会达到200亿PV的流量,这是非常海量的流量。作为技术人员,我们在腾讯的梦想就是希望腾讯变成更加技术型的公司。我们团队在广告部门所负责的主要工作是各种机器学习工具的开发,以及利用机器学习工具处理腾讯的用户数据挖掘。之前互联网广告业务有两大机器学习系统,第一大系统 Logistic Regression,广泛用于广告点击率预估;第二大系统就是隐含主题建模(Latent Topic Model)。这两大系统早期都是由谷歌推动的,然后传播到国内的各个互联网公司。当然,现在由于深度学习的兴起,最近广告业务中又增加了一套基于 DNN 的系统。
在隐含主题模型方向上,我们从 2010 年开始就不断的做一些探索,我今天要讲的Peacock 系统就是我们团队在主题模型建模上的工作。今天的报告主要分成如下几个部分:我先Demo一下我们Peacock系统是如何工作的,随后简单介绍一下主题模型的背景,接着介绍Peacock是怎么来实现大规模并行计算的,最后我们讲一下主题模型在腾讯业务中的应用。
先来讲几个例子。用户在网络上的行为会留下很多的数据,其中最典型是一些文本数据,你搜索的一些文章,你发的微博,我们通过自然语言处理技术理解这些词。第一个例子是用户搜索了“红酒木瓜汤”,这样的Query给它展示什么广告? 单纯的从关健词来说,多是酒或者水果。第二个词是“苹果”,苹果实际上是多义词,可以是水果也可以是手机。第三个词“莫代尔”,在座的估计很多人不知道这个词是什么意思。
如果我们把这些词输入Peacock系统,我们看看系统会产生什么样的输出。我们可以看到Peacock 系统打印出很多行,每一行其实代表一个主题(topic),“红酒木瓜汤”系统给出的第一个主题的语义解释是 “减肥、丰胸、美容” ,从广告系统的角度,如果能够展现跟女性减肥、丰胸更相关广告,这个点击率可能高。我们发现整个Peacock的系统处理文本语义的时候,不同的主题有不同的权重,展现的时候按照主题权重排序,而每个主题用一包词描述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10