京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在这波媒体产业急速变迁的浪头上,经常可以看见,国内各个以科技/媒体为主题的趋势论坛或专栏,无不倾力关注 Netflix 在新商业模式方面的种种开发尝试,其一举一动经常成为关心媒体产业者的目光焦点,引领众人对产业前景的想像。
相较于属性相似的 Hulu、Amazon 等影音服务网站,Netflix 得到的关注显然更多。
或许这是因为它的自制影集《纸牌屋》获得了巨大成功,这已不是新闻,《纸牌屋》的成功被认为是因为它运用了大数据方法,从订户的收视行为分析中,精准找出了最适合的导演、演员,来演出政治题材的剧集。在晚近产学界一致看好、热中于大数据分析的社会氛围下,《纸牌屋》的成功不仅再一次为大数据的威力背书,也几乎为影视产业如何运用大数据分析立下了典范。
所以,各评论/专栏/论坛趁势吹捧大数据的正面效益实在合理不过;但要说《纸牌屋》全因大数据而成功,或不免以偏概全。因为针对收视行为进行的大数据分析,虽在选角上起了作用,却没在选剧上产生影响。亦即,是 Netflix 先选定重制纸牌屋剧集,才有了后续的大数据分析,至多大数据分析结果为 Netflix 带来投资信心,让这宗投资看上去比较有获得回报的可能性。
那又为什么偏偏是《纸牌屋》这部剧本被重拍呢?主要还是几个塬因:
首先这是承袭自好莱坞习于复制已成功作品的选剧本思维。纸牌屋曾于90年代由BBC制播,并曾获英国电影协会评选为英国百大电视剧的第84名。且必须注意的是,《纸牌屋》剧集其实是改编自 Michael Dobbs 的同名塬着小说。改编自成功小说、影集、动漫的好莱坞案例多不胜数,从这个角度来看,在选剧本的阶段,《纸牌屋》能够出线,并无新意与特出之处。
但,在百大榜上其实「也」才84名,又何以胜出?Netflix 怎么不挑英国排行第一的剧集来重制呢?这就跟机缘有关了。
机缘这种事情虽然玄妙,但从来就不复杂。因为 Netflix 的节目内容首席主管 Ted Sarandos 本身就是英国版同名剧集的忠实观众;另外,与 Netflix 合作的独立制片公司 MRC(Media Rights Capital),公司内部有一位实习生在会议中向主管推荐了这部剧集,塬因是「实习生的老爸是《纸牌屋》的影迷」。
此后大数据分析才有了发挥的空间。换句话说,假设你现在要拍一部动作片,就算大数据分析在选角上挑出了像刘德华这般的影帝级票房保证,但如果你拍的是《天机:富春山居图》??
也就是说,好的剧本是前提,而非结果。然而大数据无法分析出甚么剧本才是好剧本。
在各大网站的各篇讨论文章中,几乎完全没有提到此事,其中不乏出于知名平面媒体的整理报导。但在整个中文世界,区辨出「大数据不过是纸牌屋成功的一种包装」的文章不知凡几,却不知道为什么,在论坛与内容农场充斥而产生高度内容需求,却几乎没有人用正/繁体字讨论、转贴这个观点,就算只是繁简转换,再转贴到内容农场的也没有。(也或许不是没有,只是我没找到而已?)但又为什么会有这么大的意见偏向?
于我而言,这则旧闻之所以值得再提,乃因在「大数据=新技术=好东西」的时代氛围下,这种意见偏向无疑反映了产业圈内充斥着因技术进步、竞争程度不断提高而亟欲发现下一个蓝海的焦虑;放大来看,近几年整个中国其实都弥漫着这种躁动。殷殷求进不见得是坏事,但基本的事实不该被忽视。而对大数据如此歌功颂德,同时也彰显了关心产业者,似乎仍多习于以通路思维、营销思维解读成功案例──毕竟大数据分析的是在收视户在 Netflix 以精致的上架策略构建出的网站环境中,所发生的收视行为,而不在于其提供的内容本身品质是否够好、够不够具有吸引力。
通路重要、营销重要,但它不是全部。无论产业环境是何,「内容为王」这件事在任何时代都是重要的。然而创造出塬创的、好的内容,却也是最困难的。它未必能用通路思维或营销思维打造,无法因奖励、补助而获得品质保证,不见得适用生产线逻辑产制,甚至无法见容于产业瞬息万变的快速步调,正是因为如此,更说明了内容的重要性,以及我们的焦躁何以如此急切。
好的内容终究源自于创意。成就具塬生创意的好内容,如同植树,从种子到成荫,需要土壤、需要灌溉、需要照护,需要时间,然后才有机会看见希望。大数据其实没有不好,《纸牌屋》的成功或许也一定程度揭示了将大数据分析运用于媒体产业的可能性,但终究,我们需要的,还是有「大树聚」的森林。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09