京公网安备 11010802034615号
经营许可证编号:京B2-20210330
双12支付宝:以立体的方式凿开线下大数据冰层_数据分析师
2014年双12,网上流量疲软,而3000万大妈狂扫便利店。
看上去又有钱又任性,而其本质,是支付宝O2O落地,是阿里体系立体大数据的开始。
传统连锁零售要么学会与“狼”共舞,善用支付宝,要么,被玩死。
先看“二维”和“三维”:
1传统实体零售是二维平面的;
2传统电商(淘宝天猫)也是二维平面的;
3传统的信用卡支付是二维平面的,主要是银联卡;
4传统的线上支付也是二维平面的,换言之,早期的支付宝也是二维的。
所以,即使双11全网成交额达到571亿、线上消费占5%以上,但阿里巴巴的数据是线上二维的,与现实中的人是割裂的,落不了地。
但O2O是三维的,贯穿三维有几个核心要素:1联接、2会员、3金融,尤其是支付。
再看支付宝,三亿实名用户信息,以网上交易为主,拥有绝大多数网上交易数据,这是宝藏。这三亿人其实都是银行卡用户,换言之,银联的用户。这三亿人也都是网购人群,年轻人为主,社会消费的主力军。但不可否认的是,95%的消费在线下,而线下交易是银联的地盘。
反观支付宝的手机客户端,拥有上亿装机总量,每天的点击量(Daily Active User),不亚于手淘。但是,它只专注于支付。其扩展的“服务窗”(类似微信公众账号),也是媒介,可以等同理解为广告窗口,直接跳转到支付环节的简洁步骤,不啰嗦,没废话。
再看团队基因,阿里系里支付宝团队的服务意识相对较强。
2013年双11,阿里巴巴O2O最有效的积累,是和银泰百货的支付宝合作。尽管声波支付实际效果欠佳,但留给支付宝的是空军落地的宝贵经验。
2014年,京东和阿里抢夺便利店O2O,京东抢的是物流,阿里抢的是支付,个人认为支付宝技高一筹。
京东金融,太弱小,还无法发力。微信支付,还在寻找和丰富其线下的应用场景,姑且不论。
重新评估O2O的几个要素:“支付”作为第四个维度,just follow the money,把“人、货、场、时间”都穿插在一起……
我认为,支付宝真正的意图是:与连锁便利店合作,用低价高频的SKU进行补贴,撬开地面网络,获取地面二维网络的用户和交易数据。
在这种情况下,银联由于其机制原因,已经溃不成军,其反击还需要相当的时间。
所以,支付宝进入线下的第一波,动的是银联的奶酪,但还不是动银行的奶酪。
总结起来,支付宝在双12的收获如下:1从空中进入地面零售网络,形成三维。2获取地网的用户,绑定支付宝,交易信息。3最核心是让用户形成支付习惯,这是最可怕的力量。
相比之下,微信只有联接,没有交易,没有实名会员,微信支付还要跑步前进才行啊。
有个比喻,大象打架,菜园子毁了。有一类公司,会彻底被拍死:拉卡拉式第三方支付。跟不上移动互联网,拉卡拉基本上武功全废。因为商家透过便利店支付宝,会马上知道:原来网上的用户,就住在全家附近啊?原来网上买衣服的用户,线下买85度C的某个面包啊?这种大数据,线上线下交融的大数据,其威力巨大无比……
再回到4个身份:1肉身,2网络匿名身份,3权益身份,4支付身份。支付宝至少得到3个身份。大妈,不太在意权益身份,为了省钱,管它呢。这样支付宝4个身份就都有了。
当然,支付宝没有社交属性,这是微信比它牛的地方,但是支付宝里的社交属性,是强关联。“老子钱都为你花了,人还不是我的吗?”
支付宝,阿里O2O的真正使者。无论喜欢与否,O2O的真正风暴已经来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20