京公网安备 11010802034615号
经营许可证编号:京B2-20210330
细数大数据领域待解决4大问题_数据分析师

不仅仅是机遇 细数大数据领域待解决问题
其实从上述内容我们不难看出,大数据的诞生和发展带给我们的不仅仅是机遇,同时在技术和应用层面用户也面临着很多挑战和困难,放眼国内的大数据领域市场,有很多行业压力摆在我们面前,本期我们就来说说国内目前的大数据仍然面临的几大问题。
数据来源良莠不齐
我们都知道,我国国内的人口众多,大数据给我们带来的机遇和压力都不小,作为一个新兴领域,尽管大数据意味着大机遇,拥有巨大的应用价值,但同时也遭遇 工程技术、管理政策、人才培养、资金投入等诸多领域的大挑战。只有解决这些基础性的挑战问题,才能充分利用这个大机遇,让大数据为企业为社会充分发挥的最大价值与贡献。
丰富的数据源是大数据产业发展的前提。而我国数字化的数据资源总量远远低于美欧,每年新增数据量仅为美国的7%,欧洲的12%,其中政府和制造业的数据资源积累远远落后于国外。
现在很多企业时时刻刻都在产生着大量数据,但这些数据如何归集、提炼始终是一个困扰。而大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的信息,但前提是如何获取大量有价值的数据。
大数据时代,我们需要更加全面的数据来提高分析预测的准确度,因此我们就需要更多便捷、廉价、自动的数据生产工具。除了我们在网上使用的浏览器有意或者无意记载着个人的信息数据之外,手机、智能手表、智能手环等各种可穿戴设备也在无时无刻地产生着数据。
云计算平台和大数据之间的相辅相成关系是现在IT业界所共识的,机等各种网络入口以及无处不在的传感器等,都会对个人数据进行采集、存储、使用、分享,而这一切大都是在人们并不知晓的情况下发生。
数据分析模型建设困难
现在越来越多的用户开始试图用大数据分析技术来去解决很多问题,但是大数据的大,一般人认为指的是它数据规模的海量。随着人类在数据记录、获取及传输方面的技术革命,造成了数据获得的便捷与低成本。
大数据的真正价值不在于它的大,而在于它的全面:空间维度上的多角度、多层次信息的交叉复现;时间维度上的与人或社会有机体的活动相关联的信息的持续呈现。
要以低成本和可扩展的方式处理大数据,这就需要对整个IT架构进行重构,开发先进的软件平台和算法。这方面,国外又一次走在我们前面。特别是近年来以开源模式发展起来的Hadoop等大数据处理软件平台,及其相关产业已经在美国初步形成。
用户使用权和隐私的平衡
很多人现在一说到大数据就“谈虎色变”,究其很重要的原因之一就是大数据挖掘和分析技术带来的用户隐私的泄露。有专业人士指出,中国人口居世界首位,但 2010年中国新存储的数据为250PB,仅为日本的60%和北美的7%。2012年中国的数据存储量达到64EB,其中55%的数据需要一定程度的保 护,然而目前只有不到一半的数据得到保护。
笔者在以前的文章当中曾经写过,大数据技术其实是一把双刃剑,我们如何在推动数据全面开放、应用和共享的同时有效地保护公民、企业隐私,逐步加强隐私立法,将是大数据时代的一个重大挑战。
数据增值的关键在于整合,但自由整合的前提是数据的开放。在大数据的时代,开放数据的意义,不仅仅是满足公民的知情权,更在于让大数据时代最重要的生产资料、生活数据自由地流动起来。
数据的管理难度
海量数据通过挖掘、收集、存储、分析、最后被应用在不同行业当中,这当中的众多步骤在管理方面都是需要仔细计划的。因为显而易见,大数据的用户体验效果很有可能直接影响到企业以及个人用户的一些决策。
大数据能够真正发挥作用,深层次看,还要改善我们的管理模式,需要管理方式和架构的与大数据技术工具相适配。大数据应用领域仍窄小,应用费用过高,制约大数据应用。国内能利用大数据背后产业价值的行业主要集中在金融、电信、能源、证券、烟草等超大型行业。
编辑的话
大数据技术作为当下最为火热的IT话题,已经开始在很多行业和企业当中进行了充分的应用,放眼国外一些领先企业的大数据解决方案我们不难发现,和云计 算、虚拟化等诸多技术之间的整合作用是十分重要的,所以在未来国内的大数据市场发展当中,利用云平台的高扩展性进行灵活整合是我们需要关注的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16