京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“我跑企业20多年,经常是制造企业老板驾驶汽车开到厂房里,告诉我,这是亚洲的最大厂房。这种情况,今后可能越来越少。从今往后看,中国新的制造企业模型,一定是专业公司+信息化改造+小制造。”在一场财富论坛上,著名财经作家吴晓波一席话,震撼了在场的很多企业主。
与之相呼应的是世界著名财经报刊《经济学人》,近日撰文称“数字化生产推动第三次工业革命”。文章指出,不远的将来,借助新材料和信息技术的应用,大多数产品都可经过计算机设计,然后通过3D打印机“打印出来”。一个不限地点、无需工人、真正实现个性定制化的时代即将降临。在这股全球性“信息化大数据”浪潮中,中国定制衣柜行业首当其冲,而“整体衣柜十大品牌”诺维家率先积极应对,2014年10月基于云平台的CRM系统正式启用,预示中国定制衣柜行业第三次革命的大数据管理时代拉开序幕,宣告定制衣柜高价格时代的终结、大众化普及时代的来临!
个性化定制与规模化生产的冲突
现今普通消费者购买的商品房都不大,对于合理优化和利用住宅空间有迫切的需求,只有定制才能满足。所以,这是一个对全屋定制家具有强烈需求的市场,但由于定制家具过于高端,普通消费者难以承受。
即使到现在,定制仍与高端、与小规模生产挂钩,尤其是家具这类大宗货物。原因在于,在生产环节,传统定制家具生产效率低、材料浪费高,难以量产;在接单环节,定制需要设计师针对消费者个性需求进行设计,人力、时间成本高。上述两个环节因素的制约,导致定制家具价格居高不下,难以实现规模生产。
对于坚持“任何空间任意定制”的诺维家而言,要发展就必须解决个性定制与规模生产的冲突。其解决办法是导入大数据管理系统,一个是生产系统,另一个是销售设计、分析系统。
诺维家是先设计销售、再生产的商业模式。为解决传统设计人力、时间成本高的问题,诺维家自建云诺4D全屋装修设计软件,一方面对全国各大城市数以万计的户型数据进行收集,梳理出几十个最基本的户型。另一方面通过在与消费者沟通时,收集信息,例如房屋朝向、户型、业主身高、颜色喜好与最终选定的方案等,录入信息库。
如此一来,当新的消费者进店后,设计师就可很快在已有户型中挑选最贴近的房型,进行微调后开始方案设计。
而在方案确定后,每一件家具的每一个部件都会拆分、转化为一个又一个的数字,被传送到诺维家的云数据库订单中心。用大数据的方式,指挥每一台机器生产。
在此情况下,诺维家生产效率是传统家具制造企业的7到8倍,材料利用率提升5%,出错率大幅降低。通过部件拆分“排板”后,板料基本都被各个部件填满,即使是边角料也能被有效利用,而传统家具制造企业的材料利用率仅85%左右。
相比之下,传统家具制造过程中,员工在生产操作时要向机器输入指令,对员工的技术和经验要求高不说,速度慢且出错率相对较高,行业流行一句话“出错率提高一个点,就要损失将近10%的产能去补错。”在“机器指挥人”后,这些问题得到很好的解决。
大数据管理系统大大降低非标件成本
在诺维家生产车间,每个部件都有一个“身份证号码”和一个“二维码标签”。每一个身份证号码由21位数字组成,包含了板件的开料尺寸、封边方式、开槽方式、打孔方式、邮寄地址等信息。这个“身份证号码”保证每个配件都不会重复,它是在不同的时间、不同的批次、不同的订单、不同的柜体、不同的生产批次里面都是唯一的号码,永远存在云数据库里面。
通过导入大数据管理系统,成千上万的订单,就有成千上万带有身份证号码的板件,通过擅长处理海量数据的电脑能把它们合并,相同颜色、相同厚度、某个方向相同的尺寸……把它们全部放在一起,用优化软件排序,然后开料。分类之后,就像流水线一样,生产效率大大提高,成本自然就降下来。
原来依靠工人按照图纸来计算孔位,调机器,然后打板。而现在只要用扫描枪对着每块板材的“身份证”扫描,所有板材的孔位尺寸、数据,全部信息一览无遗,之后机器设备自动定位,定位好以后,孔位一次性加工完毕。这种傻瓜式操作方式,不但用工门槛低,解决用工荒问题,且效率得以数万倍的提高。
利用大数据管理,标准件和非标件实现同价,这是诺维家赢得市场的杀手锏,而“机器指挥人”背后的大数据管理系统,是诺维家能将个性化定制做成规模化的秘诀之一。
个性化定制与规模化生产,过去本是矛盾的两种模式,现今在大数据管理的统领下,互为补充、共同增长,满足市场对定制家具的海量需求,并在推动诺维家朝百亿目标奔进的同时,亦可隐约窥见背后强大的推动力:大数据管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31