京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据 其实一直在路上_数据分析师
看过三国演义的朋友想必都知道草船借箭这个典故,是说诸葛亮可以提前预测到三天后的夜晚,雾锁长江,于是他与周瑜立下军令状,在最后一个夜晚,与鲁肃在长江上草船借箭,完成了周瑜下达的几乎是不可完成的任务。
现如今,这或许是大数据应用的一个典例。一个人若是通晓上下五千年的知识,其实他的大脑就相当于一个大型数据库,将这个库里的知识进行融会贯通,就能应用于各个行业。诸葛亮能想出草船借箭这样的绝妙计策,应用于军事,他是掌握了历年来长江这个地段的天气情况,夜观天象,或许这就是一种基于大数据分析的预测模型。
历次产业技术革命,中国都是学习者和模仿者,进入了大数据时代,中国几乎和欧美发达国家处在了同一起跑线上,有媒体指出,中国人口居世界首位,将会成为产生数据量最多的国家,随着中国经济的不断发展,其海量数据中蕴含的商业价值是不可估量的。中国很可能成为大数据这一领域的先驱,巨大的多元化社会创造了大量机会,制造了大数据这一资源,并建立大数据应用。
跨界融合意味着什么
软通动力集团首席技术官方发和在接受采访时表示:当前主流的SMART技术,即社交媒体、移动互联网、大数据分析、云计算、物联网,不是孤立存在的,而是一个相互融合的应用与发展。在数字化经济迅速崛起的趋势下,这种创新融合使得今天的IT业不再像过去那样只是提供简单的服务,而是通过技术的不断的发展与创新,以及在行业中的不断渗透,为客户创造更多价值。
当然,大数据不仅仅是IT业的事情,许多行业内领军企业,都意识到大数据新思维的巨大冲击,给这些企业家们带来冲击的不是大数据本身,而是一些新兴企业不可思议的跨界能力。行业之间的界限变得越来越模糊,很多人采用新技术、新模式,大规模采集数据,迅速形成预判,扩张到企业行业。譬如乐视网,销售电视、拍电影;小米做手机、售电视;百度、360等开始做着各种硬件
方发和认为,新技术既是挑战,更能带来机遇。SMART技术的发展与融合,在催生出一些新的行业与领域的同时,也给更多的传统行业带来了新生机。各种行业云的应用落地以及智慧城市、智慧金融、智慧医疗、智慧商务、智慧旅游、智慧农业等一系列智慧产业的迅速崛起,也为更多的技术企业带来了新的发展机遇。未来,大数据基因将更多的融入各行各业。
开放与隐私如何和谐共处
纵观国内大数据市场,仍处于概念大于应用的阶段,大部分企业尚未理顺线性、封闭系统内的数据关系,更无法将大数据转化为商业价值。
众所周知,丰富的数据源是大数据的前提条件,但大多数企业面临着孤岛危机,只能获得公司自身的数据而无法获取外部数据,即使企业内部,IT团队的数据访问权限也无法全面放开。要真正做到大数据的开放,还需要很长的路走。
然而开放与隐私如何平衡,亦是一大难题。任何技术都是双刃剑,大数据也不例外。如何在推动数据全面开放、应用和共享的同时有效地保护公民、企业隐私,逐步加强隐私立法,将是大数据时代的一个重大挑战。
大数据平台在提供服务的同时,也在时刻收集用户的各种消费习惯、浏览习惯甚至生活习惯。如何保护用户的隐私成了大数据时代发展过程中不可回避的问题。因此,大数据的应用价值在于个人隐私保护与数据精准之间的平衡。
方发和表示:公共数据资源的开放,是需要一定的标准和规范来加以约束的,哪些公共数据资源可以开放?如何开放?这都是需要考虑好的问题。其中,对于那些涉及信息安全的数据,一定要尽最大可能地给予保护;对于那些有可能涉及个人隐私的数据,也要经过处理之后,例如封装之后才能开放。在安全的前提下,实现数据分享,真正创造数据价值,这才是大数据真正的目的。
大数据会成为互联网之后,人类又一个技术乌托邦。大数据的启动跟互联网有着相同的逻辑,初步探讨时不知道如何起步,会有一轮甚至几轮比较明显的产业泡沫,但是随着那些看似乌托邦的愿景,一个技术、一个尝试的创业公司的进入,会一步一步变成现实。
饮水思源 唯有源头活水来
作为大数据的领跑者,美国已经拥有了三家最成功的大数据公司--谷歌、亚马逊和Facebook.大数据究竟给这三家企业带来了什么?用大卫芬雷布的话说,就是谷歌知道你想搜索什么,亚马逊知道你想买什么,而Facebook知道你喜欢什么.
大数据分析也不例外,需要真实可靠的数据来源。随着移动互联、社交网络、电子商务、物联网的快速发展,数据来源多种多样,除了我们在网上使用的浏览器有意或者无意记载着个人的信息数据之外,手机、智能手表、智能手环等各种可穿戴设备也在无时无刻地产生着数据;生活家居中的路由器、电视、空调、饮水机、净化器等也逐步智能并具备了联网功能,家用电器在服务我们的同时,也在产生着大量的数据;甚至我们出去逛街,商户的WIFI"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27