京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析的一些问题
从事数据仓库和数据分析相关的工作也有段时间了,大数据当下,数据分析师也火热,其实很多问题一直萦绕在脑中,有些甚至已经困扰相当长的一段时间,自己也在不断学习和工作的过程中寻找各种解决方案或者不断优化和替换之前的方案。这些问题从宏观层面到细节层面,很多问题其实没有绝对完美的解决方案,我们只能一步一步地摸索,不断寻找更优的方案以其让问题能够更好高效地得到解决,但每个人掌握的知识有限,所以无论怎么样每个人对问题的看法都会存在局限性;同时因为每个人的知识背景和经历的差异性,对各种问题又会触发各种不同的见解,所以通过集思广益往往能够得到让人眼前一亮的结论。
网站数据分析行业和数据分析师相关的问题。
Q1、你因何会选择网站分析或互联网数据分析这个行业,你认为这个行业的价值何在,发展前景如何?
我的答案:互联网是一个阳光行业,而数据分析本身又是一个非常有意思的工作,很多时候,它就像是一个侦探从细枝末节的线索中寻找那个唯一的真相,如果你喜欢这种探秘的感觉,那么你同样会喜欢上网站数据分析这个行业。
互联网数据量的快速膨胀,急需对数据进行系统化的处理和分析,以便快速地发现信息,转化价值,所以就目前来看,无论是国外的发展趋势,还是国内对这个行业的需求都是快速增长的,发展前景是比较乐观的。
Q2、作为网站的数据分析师,你完成的最有成就感的事情是什么,感到最纠结的事情又是什么?
我的答案:最有成就感的事情就是用数据实现价值,无论是通过数据排查问题进而解决问题,还是通过数据分析应用优化网站产品,其实都是创造价值的过程。
最纠结的事情其实不是整日需要维护和验证数据的一致性、准确性,数据时常会存在诸多细节上的问题,因为这些基本是必然存在的,无论在哪个公司,网站从事何种业务,技术或者数据的环境如何,数据的问题还是无所不在,而保证数据质量本身就是数据分析师最基础的工作,也是开展分析的前提和基础。
我最纠结的还是在于数据的需求和应用,如果与数据的需求方在数据的理解上达不成一致,那么很多数据需求就会存在反复的调整变动,期间就会做很多重复的工作或者无用功,甚至有些时候数据分析师大费周章地提取的一份数据在需求方那里只是用几秒钟扫视一遍,没有产生任何的价值,这也是令数据分析师最伤感的事情。所以数据分析始终要从获取最终insight的角度出发,如果数据需求中无法说明获取数据是为了试图得出何种insight,那么这个需求基本就没有实现的必要了。
Q3、作为网站的数据分析师,你日常工作中最常做的是什么,需要与哪些同事交流,一般会用到哪些工具?
我的答案:数据分析师的日常工作很简单,就是数据处理和观察报表,而且这两块工作会占用每天的大部分时间。如果每天能够准时提供准确的报表,及时地反馈数据异常,那么你已经是一个合格的数据分析师了。
数据分析师要接触的部门会比较多,可以是任何有数据需求的部门,运营、产品、市场、销售、客服……甚至是各层级的BOSS。
同样,数据分析师日常使用的工具其实也非常简单,估计在90%的时间都在使用数据库的SQL、Excel或者PPT,当然视每个公司的情况会有差异。所以如果你听到某位数据分析师说他天天在研究什么什么样的高级分析方法或者高深的数据算法,天天在使用R、SPSS、SAS,那么不排除有装X的嫌疑。
Q4、在你刚刚步入网站数据分析的工作,或者你曾经新到一个公司或者网站从事数据分析师的工作,你是如何着手开始你的新工作的,你觉得你需要了解哪些东西,会从哪些方面优先开始学习?
我的答案:“业务 => 网站或产品 => 数据处理流程 => 指标和报表”,我的基本流程就是这样的,当然这个也不绝对是前后的顺序,可以是同时结合着看的。
数据分析的重点不在于数据而在于分析,分析针对的是业务,所以业务是首要了解的东西,就像一个人做事情,首先要明确的是要做的是什么事情;然后是网站或产品,它是实现业务的媒介,就像是做事情时使用的工作或方法;数据的处理流程包括了数据的获取、处理和存储模型,它是记录信息,可以看做是日记,记录了一个人做事情的整个流程;指标和报表就是为了将一个人做事情的整个流程复述出来,把握重点同时又不失关键细节,所以必须要了解指标的统计规则和报表的展现方式,以便更好地突显重点,了解省略的细节,让复述贴近事实。 数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29