
3 城市大数据分析的保障性措施建议
3.1 与云基地的建设协同发展
各地云基地的建设意味着海量的数据将进行集中管理。其中存储、运算服务伴随云基地的设备到位就可以支持规模性增长,也为大数据分析奠定了基础,而大数据分析也使得多地的云基地建设有最切合的用武之地,不至于成为一朵“浮云”。
3.2 成立城市大数据中心
政府应用数据存在敏感性、保密性等特点,部分甚至涉及国家安全与政府机密,存在较大的管理风险,不便与其他数据混合管理。城市大数据挖掘将整合强大的存储平台和运算系统,综合分析跨地域、跨行业、跨部门的海量数据,而群体事件发现、警情分析等功能需要较快速的反应能力,因此,只有专门的设施与专业的团队配备才能满足这样大规模、高敏捷的需求。
3.3 做好人文保障工作
要做好人文保障工作,必须做到其一是基本的安全问题,必须有系统化的策略进行安全和访问控制。城市数据中心是最让黑客们感兴趣的潜在单点,因而要求最严格的安全。
其二是数据利用方面要小心谨慎,不能滥用。如移动电话数据可以在设备拥有者明确同意后,用于感知交通拥塞,但是不能作为超速驾驶的依据,不能让市民感觉身处“全景监狱”。新模型的使用模式对自愿加入的个人及单位要尽可能透明化,日常分析利用时需确保数据中敏感隐私的剥离。
此外还有许多有待讨论的问题,如是否可以“预测即惩罚”。若通过监控个人的特征和行为发现恐怖分子,那么在恐怖活动未实施之前,能否对看上去证据确凿的某个人实施控制?数据的记忆能力及对数据的接触能力将加深“信息的贫富差距”,如何让大数据走向信息互惠?[2]
3.4 顶层设计中融入大数据理念
未雨绸缪。在系统的建设初期就应该集中考虑标准化、端口与互操作问题。不同的城市,甚至同一城市的不同机构,使用不同的模型管理信息。各个部门若形成信息孤岛,加之大数据中存在的众多半结构化数据、无结构数据,将会进一步导致分析困难。因此在城市信息化的潮流中,应首先进行以大数据为核心的顶层设计[3],瞄准城市基础架构与服务中各利益相关者的需求,并注重标准规范建设。
3.5 解决关键技术问题
从国家近年来政策动向及科技基金来看,非常鼓励大数据产业及相关的研究。各城市也应当在应用、实践的过程中,研究攻克大数据分析中技术方面的问题。
3.5.1 基础技术问题
目前大数据分析所普遍采用的MapReduce分析技术在同等硬件条件下,性能远低于并行数据库;但并行数据库在扩展性、容错性的短板导致其无法“胜任”大数据分析的任务。于是,研究人员致力于整合二者的优点,将诸如Vertica、HadoopDB、Teradata等数据库对MapReduce和并行数据库进行了集成,但解决方案还是基于各方的优缺点进行折衷。例如,HadoopDB能实现关系数据库的高性能和MapReduce的扩展性、容错性,但同时也丧失了MapReduce低预处理代价和维护代价、关系数据库动态数据重分布等正面特性[5]。
3.5.2 传统分析手段改进
目前各领域采集到的数据85%以上是非结构化和半结构化数据[6],但较为成熟的数据分析方法与技术主要还是针对结构化数据的。以舆情分析为例,目前主要还是依赖主题检测和追踪、文本分类、观点倾向性识别、自动摘要等基于文本信息识别的技术。随着非结构化、多样性数据的爆炸式增长,对诸如声音、视频、地理位置等所产生的数据进行综合分析是未来的发展趋势,也是必须攻克的技术难点。
3.5.3 技术人员培养
大数据分析技术人员的缺乏也是制约发展的因素之一。目前数据挖掘、大数据分析行业的分析师比较缺乏,以互联网行业为代表的各大公司展开了人才竞争,而城市级大数据分析要求较高,更增加了对技术人员的职业要求。所以各城市要注重大数据分析师的培养,做好人员准备。
CDA注册数据分析师协会在顺应大数据、云计算的潮流下发起成立的职业简称。旨在加强国内外乃至全球范围内正规化、科学化、专业化的数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师项目包括教育,咨询,考试,认证,机构招聘合作。CDA注册数据分析师协会会员是来自学界、实务界,国内大陆、台湾及国外数据分析和数据挖掘相关领域顶尖的教授、专家.CDA数据分析师的就业前景可选择于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个行业和领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26