京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据挖掘技术在监所智能分析系统中的应用(1)_数据分析师
在过去的十几年间,公安监所内的信息化进程取得了重大进展,众多视频监控设备在公安监所中得到了应用,从监控设备的发展趋势来看,目前也向着数字化、高清化、智能化的方向转变。其中,数字化为视频的远程实时监控和智能分析提供了基础。与此同时,随着各单位对安防监控系统建设的持续投入,视频监控中的智能行为分析更是在越来越多的公安监所监控系统中得到了应用。但目前智能分析更多的是关注与事前和事发时单个监舍内人的行为的分析研判,在事后检索和大数据挖掘方面多有欠缺。
一、公安监所视频监控智能分析应用现状
智能视频分析依赖于视频算法对视频内容进行分析,通过提取视频中关键信息,进行标记或者相关处理,并形成相应事件和告警的监控方式,人们可以通过各种属性描述进行快速检索。如果把摄像机看作人的眼睛,而智能视频监控系统可以理解为人的大脑。智能视频技术借助处理器的强大计算功能,对视频画面中的海量数据进行高速分析,获取人们需要的信息。
目前,市面已经较为成熟的智能分析规则,主要有监舍内部行为分析和围墙周界行为分析。针对监舍内部在押人员的行为分析主要有剧烈运动、攀高、夜间起身检测、徘徊、人员离岗等规则,针对监所周界的行为分析主要有人脸采集识别、人员特征识别、区域入侵检测、物品遗留检测、人群聚集识别、自动跟踪等。
从智能分析产品部署来看,主要有后端服务器分析和前端摄像机分析两种模式。针对监舍内部行为分析,一般以后端服务器分析为主,此类分析需要具备较高的硬件设备性能和良好的视频图像质量,这两个要素满足得越好,则分析成功的识别率越高。而从周界的行为分析来看,目前一些厂家已经将智能分析运算集成到了前端摄像机当中。
另外,利用智能视频分析系统可以进行事前预警防范。比如人脸识别比对系统,通过建立人脸捕捉数据库,将人脸信息归档,并与个人身份建立关系,在实际运用过程中采用人脸搜索、黑名单布防、陌生人识别等多项智能分析技术,大大提高监所安防的安全性,做到在押人员在所内的轨迹跟踪和分析。
目前智能视频分析技术已经逐渐的趋于成熟,这和安防企业的努力和贡献是分不开的,他们是智能视频分析的先行者。此类的厂家以海康威视等公司为代表,其产品已经得到了众多用户的实战检验,具备较高的市场占有率。
二、公安监所视频监控智能分析应用面临的困境
随着视频监控系统的普及和智能分析技术的发展,现在智能视频分析技术已经逐渐被人们所接受,但是随之带来的问题也比较明显。一个就是视频监控系统覆盖的全面性带来的海量视频的分析,例如在视频监控的规模已经到达了千路以上规模的前提下,寻找一条可用的线索就带来很大的困难;另一个就是针对视频智能分析系统带来的碎片化,有没有一个成熟的大数据挖掘的方法?对于人脸识别分析来说,只有大批量的使用高清摄像机,增大捕获到清晰、正面人脸的可能性,才能有更好的实战效果。
一起突发事件的发生,有时会伴随着大量的视频录像线索,与事件相关的大量监控视频基本采用Windows文件目录管理的原始方式,需要通过其他类型的记录文件(如记事本,WORD,EXCEL等)来记录视频内的重点内容(如人物,时间,地点等),这就造成调取关键视频困难、视频管理效率低下,甚至造成重要视频的丢失。在查找之前的线索时,要在繁杂的资料库中检索到该视频并通过特定厂商的DVR播放器定位到对应时间点查看,这样就造成线索与对应的视频资料的映射关系的混乱和检索困难。
很多人认为在监控摄像机上用上智能分析技术,就可以高枕无忧,省时省力,实际上如果没有更好的应用,那么非但不能解放警力,还会带来安装调试复杂、设备维护困难等一系列后遗症。
三、智能视频分析系统的大数据应用
智能视频数据挖掘的应用主要是面向事后视频分析、管理和实战应用。海康威视正在着力于此类应用的研发,并开发出视频检索系统,系统采用海康威视自主研发的高效智能分析算法技术,保证分析信息的全面和准确,同时系统采用集群化计算方式,可提供几十上百倍以上实时的快速分析能力,并可根据应用需要进行线性扩展,提高计算能力。
本系统在视频资料录入的同时,自动对视频中的目标信息进行格式归一化与智能预处理分析,对视频进行快速处理,提取视频中目标的相关信息作为智能元数据保存至数据库中。之后的相关操作,如智能审看、智能检索等等就不用再做复杂的解码以及智能分析的工作,而是直接从智能元数据中提取,大大的提高了工作效率。系统可以与诸如海康威视的视频监控管理平台实现无缝对接,实施案件管理等功能,更加有效、有针对性的去关注和分析某些重要视频,获取有价值的信息,对接之后可实现网络传输,使得传输速度更快,节省存储资源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01