京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机顶盒能否“反向收集”用户行为大数据_数据分析师
1、从技术的观点来看机顶盒,为什么不能直接把用户的「操作过程」反向搜集,成为可以评估的大数据吗?包括电视台方面的设备改造,难度大吗?
2、现在一般通用的机顶盒,和ac尼尔森的数据搜集设备,技术差距有多大?
来自知乎小伙伴陳泰坦Titan的回答:
1、从技术的观点来看机顶盒,为什么不能直接把用户的「操作过程」反向搜集,成为可以评估的大数据吗?包括电视台方面的设备改造,难度大吗?
2、现在一般通用的机顶盒,和ac尼尔森的数据搜集设备,技术差距有多大?
简单回答:技术0差距,完全沒难度!
和电視台信号源完全无关,我们本身机顶盒就已经可以完成记录用戶转台的时间,停留的长度,并且可以把数据回传。尼尔森的收视仪也就是这个功能⋯
然而,为什么不呢?(沒错,以下才是正文⋯)
尼尔森公司是做什么的呢?
他们是做第三方收视率监测
关键词不是“收视率监测”,而是“第三方”
我们设想一下,如果机顶盒是收视率来源,数据会怎么样?
以广州为例。
先科普一下,广州有两个机顶盒供应商,分別是广州有线和广东有线,而由于历史原因,这两个公司分別递属于广州电视台和广东电视台。
冰雪聪明的你可能已经想到,广州有线机顶盒测出来的收视率,当然是广州台比较高;广东有线的机顶盒,当然是广东台的数据比较好好⋯收视率高,意味着广告可以卖更贵,意味着电视台收入高⋯
既当球员又当裁判,必然是不行的⋯
其实,几年前当央视收购索福瑞,成立中国最大的收视率调查公司央视—索福瑞的時候,业界就有过类似质疑。
最后再科普一个,现在尼尔森、索福瑞的收视率样本,都是有价样本,意思是,作为被调研人,是签合约收钱的,是有义务保证自己是公平公正的。
————补充说明———-
关于有同学提出当地机顶盒就是由“第三方”提供的,但请留意,目前应该还沒有一个全国性的第三方吧?
还是以广东为例,如广东的收视以广东的数据为准,湖南的收视以湖南数据为准,那会导致广告沒人看湖南卫视,湖南也沒人看广东卫视⋯
就像中国和韩国队踢球,裁判是不会用中国人或韩国人的,以免地方保护⋯
来自知乎小伙伴李宁的回答:
前两天刚同尼尔森的高层吃过饭。今天刚跟索福瑞中层开过会。
令人遗憾的是——你看电视再多,也不会成为大数据的一份子。
以下是答题。
1、技术上没什么差别,差别是稳定性。
普通机顶盒造价便宜的很,监测收视率的机顶盒造价要高得多。索福瑞和尼尔森的都是。最重要的就是数据回传的稳定性。
如果数据中断,对于时时收视率监控的影响是很大的。
数据的可靠性是数据公司安身立命的根本。当然,如果全国人民的数据都搜集,成本实在太高,所以,他们是这么做的——
2、你家开着电视机对“大数据统计”没啥影响
为了保证稳定性和准确性,所以就需要进行专门的样本监测。
样本呢,不会很多,因为统计全国人民看电视的大数据,公司估计要全球IPO了才能买得起那么多机房。
所以呢,尼尔森和索福瑞都在取样,选取不同职业、年龄、身份的人作为样本。
真相只有一个,只有他们,才对收视率有影响。
诺,就是这个玩意儿,一般人都木有见过哦。所以你天天看电视,对大数据和收视率都是木有用的。
3、说点题外话
目前收视率受到质疑,主要是因为污染样本太严重。
比如一个不知名电视剧,如果搞定了收视率样本,就能搞定广告主投放广告,电视台就能以小博大发横财,这种掮客也不少。
未来,网站、APP、电视盒子会成为重要的影视数据统计来源,索福瑞和尼尔森也在转型。
电视已是黄昏行业,浪潮之巅的大数据,充满想象。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20