京公网安备 11010802034615号
经营许可证编号:京B2-20210330
加权方法:
采用因子加权:对满足特定变量或指标的所有样本赋予一个权重,通常用于提高样 本中具有某种特性的被访者的重要性;例如,研究一种香烟的口味是否需要改变, 那么不同程度吸食者的观点也应该有不同的重要性对待:例如:重度吸食者=3,经 常吸食者=2,偶尔/不抽烟=1,记住:实际应用时候,如果“经常/偶尔”的基数足 够大,往往单独分析,不进行加权处理;
采用目标加权:对某一特定样本组赋权,以达到们预期的特定目标;例如:我们想 要:品牌 A 的 20%使用者 = 品牌 B 的 50%使用者;或者品牌 A 的 20%使用者 = 使用品牌 A 的 80%非使用者;
采用轮廓加权:多因素加权,因子/目标加权不同(一维的),轮廓加权应用于对调查 样本相互关系不明确的多个属性加权;面对多个需要赋权的属性,轮廓加权过程应
该同时进行,以尽可能少的对变量产生扭曲;
我们应该知道,无论加权的动机是什么,但操作过程是一样的:
1. 依不同属性变量/指标将样本分为多个组(加权组), 然后根据所希望各个组代表的个 体规模赋予不同的权重;即明确分析子集/样本组,通常,经常以人口结构变量、地 域变量作为分类指标;明确各个分析子集/样本组中个体的代表性强弱(权重); 2. 加权是在数据收集结束后采取的数据“纠偏”行为,但一定要清醒的知道:配额设置 不合适、FW 执行差或其他错误而造成的“不好”的原始数据收集,即使加权也一定 是“无效的”; 3. “提前避免错误/失误发生,总好过事后的任何补救!”
事后加权案例: 例如:我们为了研究,得到某小公司职员吸烟习惯的信息,进行了一项调查。从 N=78 个 人的目录中抽出了一个 n=25 人的简单随机样本。在调查的设计阶段,并没有可用于分层 的辅助信息。在收集关于吸烟习惯的信息的同时,还收集了每个回答者的年龄和性别情况。 总共有 nr=15 个人作出了回答。 由此得到样本数据的下列分布:
假设我们估计知道某公司约有 16 个男性职员和 62 个女性职员,而且男女的吸烟比例 不同。经过加权后我们得到该公司吸烟的比例估计在 53%; 我们总是希望调查所得的估计值与已知的男性和女性数量比例相一致,当我们认为一个 人是否吸烟与他的性别之间可能存在相关性, 因此他们认为, 使用事后分层能够提高估计的 精度。 然而实际上,如果在调查的设计阶段就已经获得这些信息的话,就可以用性别来进行分层。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16