京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这样就可以得到统一视图下的选择图了!
数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图 数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图
这次介绍一个 Excel 的小技巧,关于单元格格式中【数字】这一项的设定。 请看上图所示的金字塔图,有没有发现问题? 比如下图
按照常规的作图方式, 图中突出的两个地方的数字应该是“-9508”和“-15000”。 但是在 表示人口数量的时候使用负数显然是不合适的。因此我们可以想个办法将 Excel 中的图标 转换成 y 轴左右都是正数的形式。
调查数据的加权处理技术
很多人在进行统计分析和市场研究的时候, 都涉及到对数据进行加权的问题, 这是一个搞数 据分析和从事市场
研究的人都会碰到的问题, 需要大家正确理解并解释, 并采用合理的操作 技术和处理方法。 什么是加权呢? 简单地说,就是要“让一些人变得比另一些人更重要!” 要能够比较好的理解加权,首先你要了解抽样设计,特别是设计权数:每个样本单位所代表 的被调查总体的单位数。设计权数由抽样设计决定,用 Wd 表示。 设计权数 Wd=1/入样概率; 入样概率:在抽样设计中,如果一个样本的入样概率=1/50,那么该样本的设计权数=50。 也就是说,这个样本代表了总体中的 50 个单位。 关于自加权抽样设计:如果所用样本的设计权数是相等的,那么这样的抽样设计是自加 权的。也就是说,总体中的每个单元被抽中的可能性相等,具有等可能性、具有相等的入样概率。如果是自加权的,在总体均值、比例估计时不用考虑设计权数,对总量的估计只要扩 大样本。 满足自加权的抽样设计:等概率抽样、简单随机抽样、系统抽样、分层抽样—各层大小 成比例,每层内简单随机抽样、多阶段抽样—最后阶段等概率,其它阶段与单位大小成比例 概率抽样。 不等概率抽样往往不满足自加权, 对于不等概率抽样, 正确使用设计权数就尤为重要了!
下面我们看看如何进行加权处理! 加权:通过对总体中的各个样本设置不同的数值系数(即加权因子-权重),使样本呈现希望 的相对重要性程度; 基本加权等于:设计加权=某个变量或指标的期望比例/该变量或指标的实际比例;
什么情况下要进行加权? 情景 1:我们在抽样调查得到的样本结构与总体人口统计结构状况不相符,我们可以通过加 权来消除/还原这种结构差异,达到纠偏的目的; 例如,在城市和农村各调查 300 样本,城市与农村人口比例“城市:农村=1:2”(假设),在 分析时我们希望将城市和农场看作一个整体,这时候我们就可以赋予农村样本一个 2 倍于 城市样本的权重; 情景 2:除了人口统计结构,有时候我们在调查样本的某些变量或指标上样本的代表性可能 也会相对总体的实际状况过高/过低,此时,需要加权进行调整;
这类不匹配大多是我们“故意”而为(通过“追加”样本实现),比如在配额抽样的时候,设置配 额要求某类被访者对某产品的使用者必须达到 50%,但实际情况是总体市场中实际使用者 仅有 10%; 有时,则是“非情愿”的出现,比如设置了能反映总体的配额比例,但实际操作却出现了比例 偏高/偏低; 情景 3:在样本组配额实验设计中,进行不同子总体对比检验,也会通过加权来调整不同组 间的样本属性不相匹配的情形(通常设有相同的配额,但执行有可能会出现差异);通常,加 权对结果产生的差异很小,更多的是对结果从准确度上进行修饰; 情景 4:所测试样本出现了较多的缺失值,需要加权来纠正结果;对于面向特定客户的专项 研究,在调查前基本都协议有要完成的样本量,故这种情形较少;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04