京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这样就可以得到统一视图下的选择图了!
数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图 数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图
这次介绍一个 Excel 的小技巧,关于单元格格式中【数字】这一项的设定。 请看上图所示的金字塔图,有没有发现问题? 比如下图
按照常规的作图方式, 图中突出的两个地方的数字应该是“-9508”和“-15000”。 但是在 表示人口数量的时候使用负数显然是不合适的。因此我们可以想个办法将 Excel 中的图标 转换成 y 轴左右都是正数的形式。
调查数据的加权处理技术
很多人在进行统计分析和市场研究的时候, 都涉及到对数据进行加权的问题, 这是一个搞数 据分析和从事市场
研究的人都会碰到的问题, 需要大家正确理解并解释, 并采用合理的操作 技术和处理方法。 什么是加权呢? 简单地说,就是要“让一些人变得比另一些人更重要!” 要能够比较好的理解加权,首先你要了解抽样设计,特别是设计权数:每个样本单位所代表 的被调查总体的单位数。设计权数由抽样设计决定,用 Wd 表示。 设计权数 Wd=1/入样概率; 入样概率:在抽样设计中,如果一个样本的入样概率=1/50,那么该样本的设计权数=50。 也就是说,这个样本代表了总体中的 50 个单位。 关于自加权抽样设计:如果所用样本的设计权数是相等的,那么这样的抽样设计是自加 权的。也就是说,总体中的每个单元被抽中的可能性相等,具有等可能性、具有相等的入样概率。如果是自加权的,在总体均值、比例估计时不用考虑设计权数,对总量的估计只要扩 大样本。 满足自加权的抽样设计:等概率抽样、简单随机抽样、系统抽样、分层抽样—各层大小 成比例,每层内简单随机抽样、多阶段抽样—最后阶段等概率,其它阶段与单位大小成比例 概率抽样。 不等概率抽样往往不满足自加权, 对于不等概率抽样, 正确使用设计权数就尤为重要了!
下面我们看看如何进行加权处理! 加权:通过对总体中的各个样本设置不同的数值系数(即加权因子-权重),使样本呈现希望 的相对重要性程度; 基本加权等于:设计加权=某个变量或指标的期望比例/该变量或指标的实际比例;
什么情况下要进行加权? 情景 1:我们在抽样调查得到的样本结构与总体人口统计结构状况不相符,我们可以通过加 权来消除/还原这种结构差异,达到纠偏的目的; 例如,在城市和农村各调查 300 样本,城市与农村人口比例“城市:农村=1:2”(假设),在 分析时我们希望将城市和农场看作一个整体,这时候我们就可以赋予农村样本一个 2 倍于 城市样本的权重; 情景 2:除了人口统计结构,有时候我们在调查样本的某些变量或指标上样本的代表性可能 也会相对总体的实际状况过高/过低,此时,需要加权进行调整;
这类不匹配大多是我们“故意”而为(通过“追加”样本实现),比如在配额抽样的时候,设置配 额要求某类被访者对某产品的使用者必须达到 50%,但实际情况是总体市场中实际使用者 仅有 10%; 有时,则是“非情愿”的出现,比如设置了能反映总体的配额比例,但实际操作却出现了比例 偏高/偏低; 情景 3:在样本组配额实验设计中,进行不同子总体对比检验,也会通过加权来调整不同组 间的样本属性不相匹配的情形(通常设有相同的配额,但执行有可能会出现差异);通常,加 权对结果产生的差异很小,更多的是对结果从准确度上进行修饰; 情景 4:所测试样本出现了较多的缺失值,需要加权来纠正结果;对于面向特定客户的专项 研究,在调查前基本都协议有要完成的样本量,故这种情形较少;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20