
一、管理咨询行业发展历程及发展现状
管理咨询服务形成行业只有大约60年的时间,它产生的时代背景是现代企业治理模式形成,所有权和经营权分离,职业经理人阶层出现,被称作“咨询顾问”的专业人员在董事会和职业经理人之间扮演了协调关系的角色,为企业所有者提供业务策略方面的建议,在财务、人力资源、营销、供应链等运营领域的为职业经理阶层提供先进经验学习、效率优化和组织变革的服务,辅之以信息技术工具等实现手段,最终提升企业的业绩。近年来,管理咨询行业似乎在面临着一场悄然的革命,随着信息化社会的发展,先进企业实践容易在网络上找到,咨询公司过去秘不示人的知识秘笈、方法套路被公开传播,同时,职业经理人的社会总量不断增加,MBA教育普及,甚至是咨询顾问加入企业担任高管,企业和咨询公司之间的信息不对称越来越小,传统管理咨询服务的稀缺性、独特性、原创性越来越低,企业购买管理咨询服务的动力在下降,可以观察到,很多80年代成名的大牌咨询公司不是倒闭,就是被具有良好赢利模式的相关企业收购。
二、管理咨询行业目前面临的挑战
那么传统管理咨询服务的价值主张面临的挑战在哪里呢?管理咨询为企业服务的过程是:分析业务问题、提出解决方案并且帮助企业实施,客户从这个服务中得到了三个层面的价值:
一是“方法价值”,即咨询服务将企业业务现象抽象为结构化、概念化的“模型”,从而提纲挈领,化繁为简,例如平衡计分卡、供应链管理、客户关系管理等,以及各个专业领域,例如供应链的物料需求计划、人力资源的职位评估、营销的4P模型等,都是咨询中最常用的模型。二是“Know-how价值”,在通用模型基础上,参照企业或行业的最佳业务实践,运用数据对标企业或行业水平。三是“变革价值”,在实施建议上,咨询顾问帮助企业的各层面人员达成理念共识,提升技能,推动状态转化。咨询服务交付是价值实现的过程,高水平的咨询公司在三个层面上都能提供让客户感知到价值;而站在客户的角度,这三层价值必须转换为自身的商业价值。传统咨询过程在第一和第二层价值产生模式是启发式(heuristic)的,即基于直观或经验,判断商业现象,在既定逻辑框架下给出解决方案,这些解决方案与结果优化的关联性是不可确知的,这是传统咨询的商业价值受到越来越多质疑的原因。
三、大数据时代,管理咨询该如何做才能起死回生?
云、大数据等技术成为影响业务的新因素,管理咨询的方法价值和Know-how价值的创造方式必须改变。为咨询价值创新提供了改变途径:
一是循证式(Evidence Base),即决策推论基于可衡量的证据链,例如利用信息技术对企业业务进行活动级的监控,可以方便地找到关键改进瓶颈,又如测量员工的能力和性格特征,从而发现工作绩效的根因;
二是洞察和优化,利用统计学、运筹学方法,对商业规律或组织行为进行预测,找到约束条件下的商业决策最优解,发现商业现象与影响因素的关联关系,在供应链优化、薪酬激励策略、产品研发方向、客户细分选择等领域提供更显性的决策依据;
三是整合内外部能力要素,企业的组织形态越来越动态、无边界,基于伺服式架构(SOA),打破企业封闭的价值链,再造企业价值网络,创新商业模式。咨询这两方面的价值可定量、可衡量,并直接与企业业务价值相联系;结构化方法和行业经验将越来越不成为咨询公司差异化的能力,提取业务数据、拥有数据资源和分析能力成为咨询公司新的价值主张。
无论技术怎么发展,企业管理作为一种组织行为,咨询的变革价值是不可替代的。在新环境下,组织形态越来越多样,各种变革挑战层出不穷,企业更需要借助外部力量来塑造变革领导力、创新企业文化。
总之,在当今商业环境下,管理咨询要得以生存和持续发展,价值主张必须从传统的“方法、经验、变革”向“数据、分析、创新”转化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28