京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家大调查:职业受挫数据多样性,吐槽Hadoop
经过无数权威媒体的反复轰炸,我们大致已经相信,数据科学家是21世纪最神秘最性感最多金的职业,他们是大数据时代数据炸弹的拆弹专家,企业数字化经营的发动机,他们的身价堪比NFL四分卫,而且,他们比昆仑山上的雪豹数量还少。
显然,数据科学家个个都是十八般数据分析武艺样样精通的绝世高手,但他们近来也有烦心事。不久前,开源数据库SciDB开发商Paradigm4进行的一项针对111名北美数据科学家的调查显示,71%的数据科学家认为数据来源的多样性(IT经理网记者此前曾与百度创始七剑客之一,酷我音乐CEO雷鸣讨论机器学习和大数据分析的最大挑战,他也认为是数据维度),而不是数据总量构成其职业最大威胁和挑战。
值得注意的是,只有48%的受访数据科学家表示他们在工作中曾使用过Hadoop或者Spark,高达76%的数据科学家抱怨Hadoop太慢,编程速度过慢,以及其他一些局限性。
虽然Hadoop口碑不佳,但是有接近半数的数据科学家表示很难将数据存入传统关系数据库表中。Nexedi的首席执行官Jean-Paul Smets在接受采访时也曾指出,大数据的真正难题其实并不是所谓的“大”,业界目前缺乏是通过使用高效的分布式运算法则来处理数据的软件,Hadoop过于依赖Java,而Java已经被Oracle牢牢控制。中国兴起的去IOE运动,实际上为Hadoop之外的大数据软件方案提供了良机。
根据报告,有59%的数据科学家表示其所在企业已经开始采用更加复杂的分析技术,例如集群、机器学习、种量分析(Principal components analysis)、图论分析等高级分析技术分析数据,而不是局限于传统的BI报告。
还有15%的数据科学家表示计划在明年启用复杂分析技术,另有16%的数据科学家表示将在未来两年内采用复杂分析技术。
Paradigm4的报告指出,Hadoop被过度吹捧成无所不能的,革命性的大数据解决方案,实际上Hadoop并不适用于需要进行复杂分析的大数据应用场景。
Hadoop的核心技术方法数据并行(data parallel),被Paradigm4称作“闹心的并行”。报告指出,复杂分析人物往往需要经常访问、处理和分享全体数据,并在数据处理中交叉沟通中间结果,而这恰恰是Hadoop MapReduce的软肋。
22%的受调查数据科学家表示Hadoop和Spark压根不适合他们的分析任务,此外还有35%的数据科学家在尝试Hadoop或Spark后停止使用这两项技术。
在快数据和机器学习为主要趋势的大数据潮流中,Hadoop作为开源系统,企业用户自主安装后,其性能优化有相当技术门槛。其实Hadoop系统也并非数据科学家反映得那样不堪用,Hadoop系统其实也可以快起来,例如老牌超算厂商Cray的Hadoop解决方案进行了软硬件调优,并且提供后继的技术支持,测试性能要高出很多倍,很好地解决了Hadoop性能差的问题。
Paradigm4数据科学家调查报告中的一些亮点被浓缩在下面这张信息图中,供有兴趣的读者深究:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01