
如何设计 KPI 指标——关键绩效指标
KPI:关键绩效指标, 今年来企业一直关注这个问题,甚至有些公司,比如电信行业员工整天都围绕着 KPI 指标, 什么是 KPI 呢?关键绩效指标即以定量的指标衡量经营活动的量化结果,一般由客观计算 公式得出,并侧重考察当期绩效,最终成果以及对经营成果有直接控制力的工作;关键绩效 指标设定的原则应该依据“平衡计分卡”进行设定, 根据企业整体绩效目标及战略, 层层分解, 平衡考虑制定企业各层级的关键绩效指标。 关键绩效指标已经成为商业智能领域的重要体系和方法论, 如何从技术上实现 KPI 指标 设计,以及如何采用信息化手段能够呈现绩效指标,并实施管理和监控,成为构建商业智能 系统和经营分析系统的关键内容;
设计关键绩效指标的关键因素主要包括:
一致性: 保持与战略和目标一致; 所属性: 应归属个人或各团队拥有,并对其结果负责; 预测性: KPI 是衡量企业价值的推动者,期望绩效的领先绩效指标; 行动性: KPI 具有及时行动数据,用户可及时采取干预,提供绩效; 数量少: 让用户集中在几个重要价值的指标任务上; 简单性: 不要涉及复杂的指数,导致用户难直接施加影响; 平衡性: KPI 之间保持平衡并相互支持,不仅仅对局部优化流程; 触发变化:能触发一系列变化,尤其是高管进行监控; 标准化: 基于标准化定义、规则和计算方法,实现数据和仪表盘整合; 背景驱动:KPI 将绩效置于一定背景下,通过对象和阶段进行衡量; 激励性: 薪酬与 KPI 关联,在稳定期可提升影响力; 相关性: 进行定期评估及时更新;
设计关键绩效指标的 SMART 原则是: 根据经验, 在设计关键业绩指标的时候必须遵循 SMART 原则, 这五个字母分别代表一个具 体的含义:
S:业绩考核指标必须是具体和明确的,指标设计应当细化到具体内容,符合企业和 团队主导业绩目标,保证明确的导向性。
M:业绩考核指标应当是容易衡量的,工作业绩成果应体现为可以量化的指标。 A:业绩考核指标应当是可以达到的,在保证一定挑战性的基础上,指标应当是员工 在现有资源下经过努力可以实现的目标。
R:指业绩考核指标应当具有相关性,必须和企业的战略目标、部门的职能及岗位职 责紧密联系。
T:业绩考核指标应当是有明确的时间要求,关注工作完成的效率。
有关样本量代表性问题的解释
大部分从事调查研究的朋友,都会碰到“多大样本量”才用代表性问题,其实这个问题不光研 究人员会困惑, 企业也非常困惑。 那到底应该如何选择样本量呢?其实今天沈老师不是要回 答这个问题,而是帮助你:如何解释这样一个样本量是恰当或合适的,既满足统计要求,也 能考虑费用和可操作性! 1. 样本量的确定是费用与精度的函数,取决于研究的精度和费用,特别是实践中费用 考虑的更多! 2. 抽样调查,特别是随机抽样,样本有代表性,往往比普查更有效率,甚至精度更高, 这里我们主要计算和讨论抽样误差,非抽样误差是人为因素,考质量控制; 3. 样本量的确定有赖于随机抽样,或者说主要是针对随机抽样,需要统计推断下的计 算样本量,如果是非概率抽样,理论上没有计算和控制样本量的问题; 4. 如果研究只要 40-50 个样本,感觉上应该是非概率抽样(依赖被访者选择方式) 5. 即使是非概率抽样,我们很多时候也采用概率和统计分析及推断思想来进行数据分 析和下结论!只是这种方法没有完善的理论支持,或者说有可能因为研究者的主观 判断失误造成偏差; 6. 无论是概率抽样还是非概率抽样,样本量越大当然效果越好,结论越稳定(理论上 说) 7. 40-50 个样本在统计上属于小样本,t-检验,如果样本大于 60 或理想 120 以上, t 分布就是正态分布了,所以 40 个样本在统计上是最小推断总体的样本,换句话说
40-50 个样本是介于小样本和正态分布大样本的临界样本量;如果不严格的话 40 个样本就可以比较总体之间的统计差异了; 8. 所以,一般来讲,针对一个研究对象和人群,要进行比较最少 40 个样本,比如男 女差异,应该各拥有 40 人(80 人),或者说你们进行配额样本的时候要保证统计 比较的类别至少有 40 个样本; 9. 那么 40 个样本有代表性吗? 当然越多越好,越有代表性 10. 但如果调查对象非常一致,没有差异,只要问一个人就行了,所以要考虑研究对象 的差异性,如果差异大,当然样本量要大,如果没有差异,同质性较高样本量就少; 11. 总体的大小对样本量的选择没有影响,调查研究一般必须在研究前明确总体是谁, 大总体没有影响(上万人),中等总体有点影响(5000 人),小总体有很大影响 (千百个人);总体是你要推断的人群; 12. 再者要考虑研究对象在总体中拥有的比例(比如要找艾滋病人),如果比例非常低 的话,需要大样本才能找到;但往往商业研究就采用非概率抽样了,比如滚雪球抽 样,专家判断抽样,配额抽样等; 13. 另外,选择 40 个人,如果是经过我们主观判断的,有一种说法:叫条件概率,也 就是我们越了解研究目的和对象,我们就越能够做出正确判断;比如 P(A|B), 也就是说我们越了解 B 事件发生的概率,那么 A 发生的概率就越确定;就像我们在 Google 中搜东西,你的关键词=B 越准确,得到的结果 A 就越是你想要的东西; 14. 当然,如果你的主观判断错了,就会犯更大的错误 15. 还有就是希望得到的精度;如果得到的结果是 70%加减 10%误差我们可以接受, 但如果是总体本身就不到 8%,那 8%加减 10%,尾巴比头都大显然不行,当然到 底如何确定精度,是研究前你们与客户要明确的,事先研究设计确定的,不能事后 来说; 16. 记住:有时候我们研究本身不需要那么高的精度 17. 整个研究设计过程的质量控制可以更有效提升研究品质 18. 研究测试的技术(接近自然科学仪器测量)可获得更好研究品质 19. 根据精确的抽样,需要采用精确的统计分析,否则也达不到效果 20. 任何研究都不会完美,都是权衡和保守的过程,总的来讲保守不犯错.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27