京公网安备 11010802034615号
经营许可证编号:京B2-20210330
ARIMA 模型:
描述时间序列数据的变化规律和行为,它允许模型中包含趋势变动、季节变动、循环变 动和随机波动等综合因素影响。具有较高的预测精度,可以把握过去数据变动模式,有助于 解释预测变动规律,回答为什么这样本想早点完成这个时间序列的主题,但最近一直非常多的事情,又 耽搁了这么长时间。朋友们问的问题没有收尾总是不好,抓紧时间完成吧。 因为,后天要参加中国电信集团的一个 EDA 论坛,要仔细准备发言稿!在交流的过程 中,发现大家都对预测问题非常关注,尤其是数据挖掘领域,有时候分类问题与预测问题在 表达上区分不开,有时候分类就是预测,比如通过判别分析、C5.0 规则或 Logistics 回归 进行监督类建模,得到的结论说该客户是什么类别等级,似乎也可以说是预测;当然,如果 能够预测该消费者什么时候流失,也就是进行了分类;这样说吧,其实有时候并不需要严格 区分分类和预测,关键是时间点。从这也可以看出,预测问题内涵和外延是非常宽泛的,但 研究者心中要有数,这决定了你得到的结果该如何应用。 前面的博文提到,如果我们考虑时间序列预测包含有预测和干扰变量如何解决的问题。 从方法角度讲,过去没有统计分析软件要完成预测可以说是困难的,现在有了软件工具 就方便多了。 从技术角度讲:
预测模型如果能够排除因为异常原因造成的时间点事件和时间段时间,就好了。例 如某天停电没有开业,或者某一段时间比如发生甲型 H1NI 一周没有营业收入,这 些事件必须能够告诉模型未来不会再发生了;当然,我们也要把未来会重复发生的干扰因素纳入模型,例如:我们学校某天要开 运动会,小卖部的可乐销量一定提高,或者我们学校 7-8 月份放暑假,销量一定减 少,像这样的时间点和时间段事件未来会重复出现,我们如果能够告诉模型,那么 预测会更准确。
当然如果我们建立的模型能够预测未来,并能够将未来可预见的事件,包括时间点 和时间段干扰纳入预测是非常好的事情啦!
甚至,我们应该能够把预测模型中的,预测未来周期内的不可预见的时间点和时间 段随时干预预测结果,这就需要考虑如何将预测模型导入生产经营分析系统了。
下面的数据延续前两篇的案例, 只是增加了自变量, (因为手头这个案例没有干预因素变量)
在我们增加了 5 个自变量后,采用预测建模方法,选择专家建模器,但限制只在 ARIMA 模 型中选择。
确定后,得到分析结果,我们现在来看一下与原来的模型有什么不同。
从预测值看,比前一模型有了改进,至少这时候的模型捕捉了历史数据中的下降峰值, 这可以认为是当前比较适合的拟合值了。 如果我们观察预测结果,可以发现模型选择了两个预测变量。注意:使用专家建模器时, 只有在自变量与因变量之间具有统计显著性关系时才会包括自变量。如果选择 ARIMA 模 型,“变量”选项卡上指定的所有自变量(预测变量)都包括在该模型中,这点与使用专家建 模器相反;
当确定了最终选择的预测模型和方法后,我们就可以预测未来了,当然你要指定预测未 来的时间点,这里我们时间包括年、季度和月份;假定我们预测未来半年的销售收入。 我们分别设定:预测值输出,95%置信度的上下限。注意:SPSS 中文环境有个小 Bug,
必须改一下名字!
在选项中,选择你的预测时间,预测期将根据你事先定义的数据时间格式填写。(后面 的模型为了让大家看清楚,实际上我预测了一年的数据,也就是 2010 年的 4 个季度的 12 个月)。
自变量的选择问题,在预测未来半年的销售收入中,ARIMA 模型可以把其它预测变量 纳入考虑,但如何确定未来这些预测变量的值呢? 主要方法可以考虑:1)选择最末期数据;2)选择近三期数据的平均;3)选择近三期 的移动平均 这里我们选近三期移动平均作为预测自变量数值。
上面就是预测结果!于此同时,SPSS 活动数据集中也存储了预测值!
最后,我们要解决时间序列预测的检验和统计问题!说实在话,我比较关注偏好商业应用,就是看得见就做得到!从上面的分析,我们基本上就知道了哪种预测模型更好,也就不去较真只有专业统计学者才关心的统计和检验问题, 把这些交给统计专家或学术研究吧! 如 ( 果你是写学术论文,就必须强调这一点了!) 实际上我们可以通过软件得到各种统计检验指标和统计检验图表!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01