京公网安备 11010802034615号
经营许可证编号:京B2-20210330
驳《大数据时代》的三个观点_数据分析师
观点速递
近年来,信息化的步伐急剧推动着海量数据,波澜壮阔的大数据浪潮席卷人类社会各个领域,一些通俗读物囫囵吞枣的浅知误见也随之流传。例如,当前国内常 常援引维克多等人撰写的《大数据时代》中提出的三个主要观点,并成为一种流行。这不仅不能揭示大数据时代的真正本质,而且将产生严重误导。
《大数据时代》提出,大数据时代不是因果关系,而是相互关系,这说明作者不了解因果关系本身也是一种相互关系。18世纪,英国怀疑论者休谟早就指 出,不但我们的理性不能帮助我们发现原因和结果的最终联系,而且经验给我们指出它们的恒常结合以后,我们也不能凭自己的理性使自己相信,我们为什么把那 种经验扩大到我们所曾观察过那些特殊事物以外。在休谟看来,因果关系不是自然的本质,而是因为我们所养成的心理习惯和人性所造成的。恩格斯从辩证唯 物主义立场对此给与了批判性的扬弃,他指出,原因和结果这两个观念,只有在应用于个别场合时才有其本来的意义,要认识世界上一切过程的‘自己运 动’、自生的发展和蓬勃的生活,就要把这些过程当做对立面的统一来认识。《大数据时代》将休谟这一早已提出几个世纪的陈旧观点,作为大数据时代的新概 念,不仅陈旧,而且错误。
《大数据时代》认为,大数据时代不是随机样本而是全体数据,认识事物不再是从随机抽取的部分样本,而是从全部数据出发。实际上,人类在有限的时间 内不可能穷尽事物的全部。如果把现在的大数据方法和过去的小数据时代的抽样调查方法相比,我们只能说,大数据时代可以用更为精确的、全面的数据,以包含更 大因素的仿真模型来追踪、分析模拟现实,取得比过去更为精确的认识结果。尽管如此,与全体相比,我们已经认识到的永远是少数,误差、错误还是不能完全消 除。
《大数据时代》指出,大数据时代不是精确性,而是混杂性,其意指小数据时代讲究精确性,大数据时代却因为掌握了大量数据而不再拘泥于精确性,可以 比较模糊地行动。这显然是错误的。因为过去的方法虽然能够掌握精确的小数据,但大多数数据却会因处理能力有限而被遗漏、舍弃,认识的结果自然就无法实现精 确、全面。在大数据时代,因为掌握了更为全面的数据,可以在更大的时间和空间范围认识事物,因此能够更为准确、量化,以至于对一些事物现象的中间模糊区域 也可以得到更为准确的认识,其精确度和模糊度、误差本身都更为精确量化。
我曾预言,信息化是上帝给中国崛起准备的礼物,因为中国的人口数量世界第一,信息产业市场最大,最有机会发展信息化、大数据和智慧化产业。现在大 数据迅速推广,可喜可贺。但目前我国有一种极为严重的盲从国外的现象,盲目跟外国人之口风。我们千万不要因盲从国外而将上帝送来的礼物又让给别人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16