京公网安备 11010802034615号
经营许可证编号:京B2-20210330
驳《大数据时代》的三个观点_数据分析师
观点速递
近年来,信息化的步伐急剧推动着海量数据,波澜壮阔的大数据浪潮席卷人类社会各个领域,一些通俗读物囫囵吞枣的浅知误见也随之流传。例如,当前国内常 常援引维克多等人撰写的《大数据时代》中提出的三个主要观点,并成为一种流行。这不仅不能揭示大数据时代的真正本质,而且将产生严重误导。
《大数据时代》提出,大数据时代不是因果关系,而是相互关系,这说明作者不了解因果关系本身也是一种相互关系。18世纪,英国怀疑论者休谟早就指 出,不但我们的理性不能帮助我们发现原因和结果的最终联系,而且经验给我们指出它们的恒常结合以后,我们也不能凭自己的理性使自己相信,我们为什么把那 种经验扩大到我们所曾观察过那些特殊事物以外。在休谟看来,因果关系不是自然的本质,而是因为我们所养成的心理习惯和人性所造成的。恩格斯从辩证唯 物主义立场对此给与了批判性的扬弃,他指出,原因和结果这两个观念,只有在应用于个别场合时才有其本来的意义,要认识世界上一切过程的‘自己运 动’、自生的发展和蓬勃的生活,就要把这些过程当做对立面的统一来认识。《大数据时代》将休谟这一早已提出几个世纪的陈旧观点,作为大数据时代的新概 念,不仅陈旧,而且错误。
《大数据时代》认为,大数据时代不是随机样本而是全体数据,认识事物不再是从随机抽取的部分样本,而是从全部数据出发。实际上,人类在有限的时间 内不可能穷尽事物的全部。如果把现在的大数据方法和过去的小数据时代的抽样调查方法相比,我们只能说,大数据时代可以用更为精确的、全面的数据,以包含更 大因素的仿真模型来追踪、分析模拟现实,取得比过去更为精确的认识结果。尽管如此,与全体相比,我们已经认识到的永远是少数,误差、错误还是不能完全消 除。
《大数据时代》指出,大数据时代不是精确性,而是混杂性,其意指小数据时代讲究精确性,大数据时代却因为掌握了大量数据而不再拘泥于精确性,可以 比较模糊地行动。这显然是错误的。因为过去的方法虽然能够掌握精确的小数据,但大多数数据却会因处理能力有限而被遗漏、舍弃,认识的结果自然就无法实现精 确、全面。在大数据时代,因为掌握了更为全面的数据,可以在更大的时间和空间范围认识事物,因此能够更为准确、量化,以至于对一些事物现象的中间模糊区域 也可以得到更为准确的认识,其精确度和模糊度、误差本身都更为精确量化。
我曾预言,信息化是上帝给中国崛起准备的礼物,因为中国的人口数量世界第一,信息产业市场最大,最有机会发展信息化、大数据和智慧化产业。现在大 数据迅速推广,可喜可贺。但目前我国有一种极为严重的盲从国外的现象,盲目跟外国人之口风。我们千万不要因盲从国外而将上帝送来的礼物又让给别人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20