京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		大数据时代的非精准分析是否有用_数据分析师
	
2012年是“大数据”这个概念红火的一年,正如前一年的“云计算”,但概念很多,真正实用的却很少,这杯美酒如果不是吹出来的,至少也还是需要经过几年的窖藏才能面试。
据说,阿里巴巴基于大数据构建了“RTB广告交易平台”名为Tanx,能够实现让广告主从购买媒体变成直接购买用户。形象的说法是,一个人在淘宝上买了一件商品,比如项链,接着无论是打开优酷、PPS看视频,还是上搜狐、网易浏览网页,广告框里显示的广告全都有项链。
因为,在购买了项链之后,你就被贴上了“喜欢项链”的标签,卖项链的商家可以通过交易平台“买下”你,接着该平台会跟踪你的浏览行为,在你浏览其他网站的时候,恰到好处地把该商家的广告推送到你面前。而且,整个购买过程采用实时竞价的方式,即RTB(Real Time Bidding),价高者得。
这应该算是大数据的一个应用吧,也可以看作是阿里巴巴去年将大数据列为电子商务未来核心竞争之一的成果。但我们却不得不考虑,这样的广告真的有效吗?
1、大数据的分析从原来统计分析看重的因果分析转为相关分析,只要知道是什么,而不重点探究为什么。这已经成为共识,但这却不能成为大数据分析中力所应当的,这无论如何都是缺陷,而在大数据的背景下,分析原因将变得更为重要,也更需要定性和直觉。以上这个案例突出表明了用户的喜好相关性,但因果关系却不一定,弄错因果,差异巨大。
2、大数据分析重视对行为中的关联性研究从事进行预测,这种预测应该是具有预见性的,而不是说简单的联系。如果一个人买了项链,然后看电视剧的时候就弹出项链的广告,甚至价格,这种体验好像是事后诸葛亮,不仅不会增加购买,相反会增加客户懊悔的心境。我们需要找到的是看什么视频的人会买项链,买那款项链。
3、大数据的分析会大量收集用户的数据,虽然有一定的方法可以减小数据噪声的影响,但却也是不可能忽略的,“精确性不再重要”也只是适度而已,不能用不重视精确性的幌子来随便使用乱七八糟的大数据进行分析,因为这样的分析绝对不会有进行抽样统计得到的结果更好。
在一定意义上看,不管是微博、淘宝,等等,根据大数据进行的分析都有一定的合理性和代表性,却很难实现更大的更充分的价值,你怎知我注册信息的真伪与网络行动的真假?说起来,很多时候好笑,我使用的淘宝账户并非我自己注册,信息也不是我的,所以经常看到页面给我推荐的东西有些莫名其妙。其实,完全有办法根据我的购买习惯发现我的性别、住址、工作等等差异的,可粗线条的大数据难以做到,或者觉得没必要做到。
大数据分析需要连续的真实的少杂质的数据,而这些数据对于大多数中国企业而言简直是天方夜谭,在中国,也许银行、航空好一些,其他的即便通信运营商也是支离破碎的断断续续的真真假假的,这样的大数据分析就非常不靠谱了。
我们应该好好利用如今社会的数据采集系统珍藏的海量数据,但也不能太神话,在数据分析面前,智慧永远比算法和数量更重要,数据的多少并不是决定结果是否有价值的核心标准。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28