京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS机试考题及答案_SPSS考题答案_SPSS机试考题(1)_数据分析师
第一部分 数据整理考试题 1 建立以下数据的数据文件:
对所建立的数据文件进行以下处理: ⑴计算每个学生的总成绩、平均成绩,并按照总成绩的大小进行排序(转换 -计算变量,数据-排序个案) ⑵设 X、Y、Z 分别表示语文、数学、化学,对称其进行以下处理: ①X′ =
X
②Y ′ =
Y + 5 (x1=sqrt(x)) Z + 5 (转换-计算变量) Z + 10
③对化学成绩,若是男生, Z ′ = 若是女生: Z ′ =
④把数学成绩分成优、良、中三个等级,规则为优( X ≥85),良(75≤ X ≤ 84),中( X ≤74),并进行汇总统计。 (转换-重新编码为不同变量,频数分析)
2 在一次智力测验中,共有 10 个选择题,每题有 A,B,C,D 四个答案,8 个被测 对象的答卷如下表。已知第 1、6、10 题的正确答案为 A,第 4、5、7、8 题的正 确答案为 B, 第 2、 题的正确答案为 C, 第 3 题的正确答案为 D,请建立合适的数 9 据文件,统计每个被测对象的总成绩(满分 100)。 (转换-对个案内的值计数,选 择题号,再定义值 A or B C D 然后添加,转换-计算变量,Q+W+E+R 再乘以 10 就是总成绩)
3 某个汽车收费站在每 10 分钟内统计到达车辆的数量,共取得 20 次观察数据, 分别是:27、30、3l、33、16、20、34、24、19、27、21、28、32、22、15、33、 26、26、38、24,现要求以 5 为组距,对上述资料进行分组整理。 (再重新转换重新编码为不同变量)
4 练习加权处理功能: ⑴练习课本案例 3-8(p84).(加权销售量,再分析-描述统计-描述,只添 加单价,均值即是当天平均价格)
⑵下表是某大学一个系的学生按照年级、 性别和年龄复合分组的人数的资料。 要求:首先建立合适的数据文件,其次计算全校学生的平均年龄以及每个年 级的平均年龄。 (加权人数,分析-比较均值-均值,因变量是年龄,自变量是年 级)
5 练习 spss 随机数的产生方法。 ⑴利用 Spss 的变量计算功能, 随机生成服从标准正态分布的 10 个样本数据。 (转换-计算变量-函数全部 找 RV.normal(0,1)) ⑴利用 Spss 的变量计算功能,随机生成服从参数为 2 的指数分布的 15 个样 本数据。 (转换-计算变量-函数全部 找 RV.EXP(2))
第二部分 描述性统计分析考试题
6 下表为 10 个人对两个不同的问题作出的回答(回答为“Yes”或“No”)后得到的数据, 要求,建立数据文件,利用 SPSS 为该数据创建频数分布表。(分析-描述统计-频率--全 部变量加进去)
7
调查 100 名健康女大学生的血清总蛋白含量(g%)如下表,试作频数表分析。 (1)、建立数据文件并输入数据,并保存数据。 (2)、对女大学生的血清总蛋白含量进行频数分析(Frequencies) ,做出频数表,并做出直方图,计算四分位数(Quartiles)、均数(Mean)、中位数(Median)、众数(Mode)、总和 (Sum)、标准差(Std.deviation)、方差(Variance)、全距 (Range)、最小值(Minimum)、最 大值(Maximum)、标准误(S.E.mean)、偏度系数(Skewness)和峰度系数(Kurtosis)。(分析 -描述统计-频率) (3)、并对此数据进行整理,进行统计分组,已知最小值为 6.430,最大值为 8.430,全 距 为 2.000 , 故 可 分 成 10 组 , 起 点 为 6.4 , 组 距 为 0.2, 对 新 变 量 进 行 频 数 分 析 (Frequencies) 。要求作出频数表和条形图。 (转换-重新编码为不同变量,分析-描述统 计-频率)
8 调查 20 名男婴的出生体重(克)资料如下,试作描述性统计。
利用描述性统计(Descriptives)可对变量进行描述性统计分析,计算并列出一系列相 应的统计指标(集中趋势指标、离中趋势指标、分布指标) ,且可将原始数据转换成标准 Z 分值并存入数据库(分析-描述统计-描述-将标准化得分另存为变量) 。 (1)、建立数据文件并输入数据,并保存数据。 (2)、描述性统计分析,计算四分位数(Quartiles)、均数(Mean)、中位数(Median)、众 数(Mode)、总和(Sum)、标准差(Std.deviation)、方差(Variance)、全距 (Range)、最小值 (Minimum)、最大值(Maximum)、标准误(S.E.mean)、偏度系数(Skewness)和峰度系数 (Kurtosis)。(分析-描述统计-频率)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12