
spss的数据分析报告_spss的数据分析实例_spss的数据分析(1)_数据分析师
关于某公司 474 名职工综合状况的统计分析报告 一、数据介绍: 本次分析的数据为某公司 474 名职工状况统计表, 其中共包含十一变量, 分别是: (职 id 工编号) gender(性别), , bdate(出生日期), (受教育水平程度) jobcat edcu , (职务等级) salbegin , (起始工资) salary , (现工资) jobtime(本单位工作经历<月>), , prevexp(以前工作经历<月>), minority(民族类型),age(年龄)。通过运用 spss 统计软件,对变量进行频数分析、描述性统 计、方差分析、相关分析、。 。。以了解该公司职工上述方面的综合状况,并分析个变量的分 布特点及相互间的关系。 二、数据分析 1、 频数分析。基本的统计分析往往从频数分析开始。通过频数分析能够了解变量的取值状 况,对把握数据的分布特征非常有用。此次分析利用了某公司 474 名职工基本状况的统 计数据表,在 gender(性别)、edcu(受教育水平程度) 、不同的状况下的频数分析,从而 了解该公司职工的男女职工数量、受教育状况的基本分布。
Statistics Educational Gender N Valid Missing 474 0 Level (years) 474 0
首先,对该公司的男女性别分布进行频数分析,结果如下:
Gender Cumulative Frequency Valid Female Male Total 216 258 474 Percent 45.6 54.4 100.0 Valid Percent 45.6 54.4 100.0 Percent 45.6 100.0
上表说明,在该公司的474名职工中,有216名女性, 258名男性, 男女比例分别为45.6% 和54.4%,该公司职工男女数量差距不大,男性略多于女性。 其次对原有数据中的受教育程度进行频数分析,结果如下表 :
Educational Level (years) Cumulative Frequency Valid 8 12 14 15 16 17 18 19 20 21 Total 53 190 6 116 59 11 9 27 2 1 474 Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Valid Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Percent 11.2 51.3 52.5 77.0 89.5 91.8 93.7 99.4 99.8 100.0
1
Histogram
200
150
Frequency
100
50
0 7. 5 10 12. 5 15 17. 5 20 22. 5
M ean = 13. 49 St d. D ev. = 2. 885 N = 474
E ducational Level (years)
上表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为 190人,占总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。且接受过高于 20年的教育的人数只有1人,比例很低。 2、 描述统计分析。再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分 布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算 基本描述统计的方法来实现。下面就对各个变量进行描述统计分析,得到它们的均值、 标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。 Descriptive Ststistics N Minimu m Maximu m Mean Std. Deviation Skewness Kurtosis
Sta文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10