京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss的数据分析报告_spss的数据分析实例_spss的数据分析(1)_数据分析师
关于某公司 474 名职工综合状况的统计分析报告 一、数据介绍: 本次分析的数据为某公司 474 名职工状况统计表, 其中共包含十一变量, 分别是: (职 id 工编号) gender(性别), , bdate(出生日期), (受教育水平程度) jobcat edcu , (职务等级) salbegin , (起始工资) salary , (现工资) jobtime(本单位工作经历<月>), , prevexp(以前工作经历<月>), minority(民族类型),age(年龄)。通过运用 spss 统计软件,对变量进行频数分析、描述性统 计、方差分析、相关分析、。 。。以了解该公司职工上述方面的综合状况,并分析个变量的分 布特点及相互间的关系。 二、数据分析 1、 频数分析。基本的统计分析往往从频数分析开始。通过频数分析能够了解变量的取值状 况,对把握数据的分布特征非常有用。此次分析利用了某公司 474 名职工基本状况的统 计数据表,在 gender(性别)、edcu(受教育水平程度) 、不同的状况下的频数分析,从而 了解该公司职工的男女职工数量、受教育状况的基本分布。
Statistics Educational Gender N Valid Missing 474 0 Level (years) 474 0
首先,对该公司的男女性别分布进行频数分析,结果如下:
Gender Cumulative Frequency Valid Female Male Total 216 258 474 Percent 45.6 54.4 100.0 Valid Percent 45.6 54.4 100.0 Percent 45.6 100.0
上表说明,在该公司的474名职工中,有216名女性, 258名男性, 男女比例分别为45.6% 和54.4%,该公司职工男女数量差距不大,男性略多于女性。 其次对原有数据中的受教育程度进行频数分析,结果如下表 :
Educational Level (years) Cumulative Frequency Valid 8 12 14 15 16 17 18 19 20 21 Total 53 190 6 116 59 11 9 27 2 1 474 Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Valid Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Percent 11.2 51.3 52.5 77.0 89.5 91.8 93.7 99.4 99.8 100.0
1
Histogram
200
150
Frequency
100
50
0 7. 5 10 12. 5 15 17. 5 20 22. 5
M ean = 13. 49 St d. D ev. = 2. 885 N = 474
E ducational Level (years)
上表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为 190人,占总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。且接受过高于 20年的教育的人数只有1人,比例很低。 2、 描述统计分析。再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分 布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算 基本描述统计的方法来实现。下面就对各个变量进行描述统计分析,得到它们的均值、 标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。 Descriptive Ststistics N Minimu m Maximu m Mean Std. Deviation Skewness Kurtosis
Sta文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27