京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss的数据分析报告_spss的数据分析实例_spss的数据分析(1)_数据分析师
关于某公司 474 名职工综合状况的统计分析报告 一、数据介绍: 本次分析的数据为某公司 474 名职工状况统计表, 其中共包含十一变量, 分别是: (职 id 工编号) gender(性别), , bdate(出生日期), (受教育水平程度) jobcat edcu , (职务等级) salbegin , (起始工资) salary , (现工资) jobtime(本单位工作经历<月>), , prevexp(以前工作经历<月>), minority(民族类型),age(年龄)。通过运用 spss 统计软件,对变量进行频数分析、描述性统 计、方差分析、相关分析、。 。。以了解该公司职工上述方面的综合状况,并分析个变量的分 布特点及相互间的关系。 二、数据分析 1、 频数分析。基本的统计分析往往从频数分析开始。通过频数分析能够了解变量的取值状 况,对把握数据的分布特征非常有用。此次分析利用了某公司 474 名职工基本状况的统 计数据表,在 gender(性别)、edcu(受教育水平程度) 、不同的状况下的频数分析,从而 了解该公司职工的男女职工数量、受教育状况的基本分布。
Statistics Educational Gender N Valid Missing 474 0 Level (years) 474 0
首先,对该公司的男女性别分布进行频数分析,结果如下:
Gender Cumulative Frequency Valid Female Male Total 216 258 474 Percent 45.6 54.4 100.0 Valid Percent 45.6 54.4 100.0 Percent 45.6 100.0
上表说明,在该公司的474名职工中,有216名女性, 258名男性, 男女比例分别为45.6% 和54.4%,该公司职工男女数量差距不大,男性略多于女性。 其次对原有数据中的受教育程度进行频数分析,结果如下表 :
Educational Level (years) Cumulative Frequency Valid 8 12 14 15 16 17 18 19 20 21 Total 53 190 6 116 59 11 9 27 2 1 474 Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Valid Percent 11.2 40.1 1.3 24.5 12.4 2.3 1.9 5.7 .4 .2 100.0 Percent 11.2 51.3 52.5 77.0 89.5 91.8 93.7 99.4 99.8 100.0
1
Histogram
200
150
Frequency
100
50
0 7. 5 10 12. 5 15 17. 5 20 22. 5
M ean = 13. 49 St d. D ev. = 2. 885 N = 474
E ducational Level (years)
上表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为 190人,占总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。且接受过高于 20年的教育的人数只有1人,比例很低。 2、 描述统计分析。再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分 布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算 基本描述统计的方法来实现。下面就对各个变量进行描述统计分析,得到它们的均值、 标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。 Descriptive Ststistics N Minimu m Maximu m Mean Std. Deviation Skewness Kurtosis
Sta文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12