京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分布式存储与数据库选型问答整理分享_数据分析师
日,有关存储系统选型的问题在微信群里讨论的火热,CSDN在这里稍微将各位专家的问答总结了一下,分享给大家。
文章内容来源大数据基础设施微信群,参与讨论的专家有中国科学院软件研究所工程师,C3核心成员李明宇,国防科学技术大学教授,CCF大数据专家委员会委员李东升,云人科技联合创始人兼CEO吴朱华,Memblaze技术顾问刘爱贵等等。
Q:有一个场景:每天有近百GB数据增加,数据内容有WORD文档和图像等多种类型。用什么存储或文件系统比较合适?
A: HDFS、HBase、Hive不太适合存文档、图片大小的文件,HDFS适用于存大文件,后两者适用于数据库场景,每天近百GB的文档、图像,那只有用SWIFT了。
Q:SWIFT与Ceph、GlusterFS、MongoDB/GridFS之间的比较呢?
A:SWIFT是专为这种场景设计的,性能可以调节。
Q:如果图像比较大的情况,一张图接近GB时,哪个合适?
A:我仍然推荐用SWIFT,SWIFT官方认为对几个G的支持都没有问题,但是我认为处理几个G的大文件性能上可能会比HDFS差,因为没有条带化。但是考虑到文档、图片类型存储,你会遇到很多几兆、几十兆的,这些文件的存储,HDFS就不如SWIFT了。从适用范围的角度来看,咱们这个场景里还是首选SWIFT。
Q:GlusterFS它的优点在哪里,在文件数量太大时Gluster会出现性能问题正常么?
A: GlusterFS,它的优点在于如果你需要使用POSIX接口,那GlusterFS是一个很好的选择,但是Gluster在文件数量、目录数量太大的情况下会出现性能衰减,这是文件系统本身的特点决定的,不论是哪种POSIX兼容的文件系统,都存在类似的问题。
Q:SWIFT、Ceph、GlusterFS、MongoDB那个更好?
A:关于SWIFT、Ceph、GlusterFS、MongoDB之间的比较,没有孰优孰劣,只有是不是适合。MongoDB是NoSQL数据库,和HBase是同一类,但是和其他几个分布式存储显然不是同一类的,不适合用于此类场景。
Q:Ceph,SWIFT分别适合什么样的情况?
A:如果你只需要用块存储,那当然是Ceph,如果只需要用对象存储,那当然是SWIFT。各自有各自擅长的地方,不过现在因为Ceph也支持对象存储,SWIFT和Ceph又是OpenStack社区非常频繁提到的两种存储形式,所以,有很多人会把SWIFT和Ceph在一起比较。
如果只要用对象存储,就选择SWIFT;如果只要用块存储,那就Ceph;即要用对象存储又要用块存储的场合,是用SWIFT还是Ceph呢?我们一般是这样推荐的:
1.如果节点数量很大,推荐用Ceph单独做块,用SWIFT做对象存储,因为在节点数量较大时,Ceph的维护成本比SWIFT要高得多,大多数场景实际应用的时候会发现,大部分数据都可以放到对象存储上(这一点如果有疑问,欢迎随时讨论);
2.如果节点数量少,那就用Ceph统一搞定,因为一般认为生产环境中最小的分布式存储应当有五个节点,所以,如果节点数量少于十个或者刚到十来个,那构建两个分布式存储显然是不理想的(考虑到空间划分问题);
3.如果团队里有牛人能轻松解决Ceph大规模部署问题,那就果断用Ceph;
4.如果希望对象存储能够和OpenStack其他项目无缝结合,如果希望实现多租户,果断用SWIFT来实现对象存储。
Q:对象存储的本质是什么?
A:对象存储本身有两个概念,一种是九几年提出的,针对NAS性能问题提出的一种新的存储架构,其实Gluster也是那种对象存储。另一种是06年亚马逊推出S3以后逐渐被人接受的对象存储,特点是RESTful接口和扁平的数据组织形式。我们说的CEPH和SWIFT提供对象存储,指的是后者,但是CEPH的底层RADOS,又是前一类对象存储。
Q:如果现在有一堆文件要存,如何选择是用对象还是用文件系统呢?
A:所谓文件系统的本质是POSIX接口,“对象”这个名词是做对象存储的人为了把自己做的东西和文件系统区分开而用的术语,把存在对象存储里的文件叫做“对象”,所以选择文件系统还是对象存储,跟你把这堆数据称作对象还是文件并没有直接关系,而是要看你是需要POSIX还是RESTful HTTP接口,是需要目录结构还是适用扁平数据管理结构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29