京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用大数据供应链释放商业价值_数据分析师
现如今,数据技术飞速发展,但大量企业数据并未得到充分利用。Gartner近期的一份调查显示,85%的《财富》500强企业都未充分发掘大数据所蕴藏的潜力并据此形成竞争优势,这样的情况将持续至2015年底。异曲同工的是,埃森哲的研究发现,虽然半数的受访企业很重视数据的准确性,但绝大多数管理者并不清楚数据分析项目会带来怎样的业务成果。企业的数据生态系统正变得日益复杂,各自为政的“数据孤岛”却比比皆是,限制了企业从数据中创造价值。
为了释放数据所蕴藏的潜力,企业应着手将数据视为一条供应链,使该链条以简单、有效的方式在整个企业中流动,并最终贯穿包括供应商和客户在内的整个企业合作伙伴生态系统。通过有效的配置和管理,数据供应链有助企业发掘内部数据,对更多数据来源进行充分利用,并最终产生切实可行的业务洞察力。
而对于强有力的数据供应链而言,数据加速起着至关重要的作用。数据加速主要依托相关工具和技术快速获取海量数据(从数据源输入专门的数据系统),并能使其迅速存储和取用。具体而言,企业能够通过数据加快节奏获取有价值的数据,进而进行数据分析,获取洞察力并据此采取行动,有时甚至能在机遇窗口极为短暂的情况下迅速交付。
由此可见,数据加速能帮助企业克服数据迁移、数据处理和数据交互的数据相关挑战,从而从根本上解决如何使数据从源头迅速迁移到有需求的企业部门,如何尽快处理数据以获取可行洞察力,以及如何快速响应用户或应用提交的查询请求等问题。
过去,数据在企业中的迁移缓慢且相对直接:数据首先被收集至暂存区,随后再转换成适当的格式,并加载存入同数据源,然后以点对点的形式将数据直接传输至数据集市,供用户和应用调取使用。然而,随着数据量和数据种类的急剧增加,这种传统的流程已难以为继。
物联网进一步推动了数据迁移的发展。到2020年,全球将有多达260亿台设备集成、纳入到物联网当中。每台互联设备都会生成数据,并且具有各自的形式和特征。对于出自各类源头、各式各样的数据,要想从源头把对应数据完整地传输到有需求的企业部门,难度好比将消防龙头当作引水口,并且要求做到滴水不漏。而数据加速恰恰有利于企业有效管理这项艰巨而又工程浩大的任务,通过各种方式将数据纳入企业的数据基础架构,确保数据能够快速存取。
长期以来,企业一直通过数据处理来获取切实可行的洞察力。然而,有待处理的数据量和数据种类显著增加。为适应该情况,实现又快又准的处理结果,企业必须培养相应的数据处理能力。
实时分析技术的崛起为企业带来了诸多全新机遇。良好的分析技术会对输入数据进行预处理。例如,通过监测客户所处位置,企业能在客户接近潜在购买地点时,向客户的移动设备发送促销或折扣信息。而更加出色的技术则会将流数据与历史(已建模的)数据有机结合起来,从而做出更加明智合理的决策。举例而言,如果能将客户位置与其购买历史对应起来,企业就能向同一位客户发送量身定制的个性化促销信息,从而提高购买的可能性。
为从更加快速的数据处理中全面获益,企业必须对计算机集群进行有效利用——即通过组织有序的成百上千台计算机筛选海量数据。市场上有关数据快速存取的新型解决方案已如雨后春笋般涌现,每一种方案都为数据处理速度、耐久性和准确性提供了有力保证。数据加速能为实现更快的数据处理提供支持,利用计算机集群的软硬件升级,使计算机的运行效率得到前所未有的提升。
数据交互主要关乎数据基础架构的可用性。用户或应用会向基础架构提交查询要求,并期望在可接受的时间范围内获得响应。传统的解决方案已使人们能够轻松地提交要求、获得所需结果,获取切实可行的洞察力。但是,大数据的兴起催生出了许多全新的编程语言,阻碍了现有用户采用这些系统。此外,由于数据规模庞大,用户不得不等候数十分钟、甚至好几小时才能获得查询结果。
用户等待时间越久,获取洞察力所需时间也就越长,进而导致业务决策和满足客户期望的过程拖沓、延缓。可想而知,客户在向自身用户提供重要服务时,例如零售交易处理,可能会要求响应时间必须达到次秒级(毫秒)的水平。而在相对不太重要的业务中,客户能够接受的响应时间也许会稍长一些。数据加速能为实现更快的数据交互提供支持,即以普遍接受的方式将用户和应用与数据基础架构关联起来,并确保按要求快速提交查询结果。
为推动数据加速,企业应从众多不同的数据技术组件中选定适用的范围构建架构。这些组件包括:大数据平台、复杂事件处理、数据采集、内存数据库、缓存集群以及各种套装设备等。同时,架构组件只有经过正确的组合和架构配置,充分利用各自的互补优势,方能够实现最大价值。为了构建能够支持数据加速的数据供应链战略,企业可以从以下几点着手准备:
大数据的诞生,使相关技术门槛降至历史新低。但是,大数据同样也带来了各种挑战。为了应对这些挑战,企业应建立数据供应链,通过数据加速加快数据的迁移、处理与交互,从而使决策者得以更加迅速地捕获数据洞察力并采取行动,最终实现数据分析投资回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12