
利用大数据供应链释放商业价值_数据分析师
现如今,数据技术飞速发展,但大量企业数据并未得到充分利用。Gartner近期的一份调查显示,85%的《财富》500强企业都未充分发掘大数据所蕴藏的潜力并据此形成竞争优势,这样的情况将持续至2015年底。异曲同工的是,埃森哲的研究发现,虽然半数的受访企业很重视数据的准确性,但绝大多数管理者并不清楚数据分析项目会带来怎样的业务成果。企业的数据生态系统正变得日益复杂,各自为政的“数据孤岛”却比比皆是,限制了企业从数据中创造价值。
为了释放数据所蕴藏的潜力,企业应着手将数据视为一条供应链,使该链条以简单、有效的方式在整个企业中流动,并最终贯穿包括供应商和客户在内的整个企业合作伙伴生态系统。通过有效的配置和管理,数据供应链有助企业发掘内部数据,对更多数据来源进行充分利用,并最终产生切实可行的业务洞察力。
而对于强有力的数据供应链而言,数据加速起着至关重要的作用。数据加速主要依托相关工具和技术快速获取海量数据(从数据源输入专门的数据系统),并能使其迅速存储和取用。具体而言,企业能够通过数据加快节奏获取有价值的数据,进而进行数据分析,获取洞察力并据此采取行动,有时甚至能在机遇窗口极为短暂的情况下迅速交付。
由此可见,数据加速能帮助企业克服数据迁移、数据处理和数据交互的数据相关挑战,从而从根本上解决如何使数据从源头迅速迁移到有需求的企业部门,如何尽快处理数据以获取可行洞察力,以及如何快速响应用户或应用提交的查询请求等问题。
过去,数据在企业中的迁移缓慢且相对直接:数据首先被收集至暂存区,随后再转换成适当的格式,并加载存入同数据源,然后以点对点的形式将数据直接传输至数据集市,供用户和应用调取使用。然而,随着数据量和数据种类的急剧增加,这种传统的流程已难以为继。
物联网进一步推动了数据迁移的发展。到2020年,全球将有多达260亿台设备集成、纳入到物联网当中。每台互联设备都会生成数据,并且具有各自的形式和特征。对于出自各类源头、各式各样的数据,要想从源头把对应数据完整地传输到有需求的企业部门,难度好比将消防龙头当作引水口,并且要求做到滴水不漏。而数据加速恰恰有利于企业有效管理这项艰巨而又工程浩大的任务,通过各种方式将数据纳入企业的数据基础架构,确保数据能够快速存取。
长期以来,企业一直通过数据处理来获取切实可行的洞察力。然而,有待处理的数据量和数据种类显著增加。为适应该情况,实现又快又准的处理结果,企业必须培养相应的数据处理能力。
实时分析技术的崛起为企业带来了诸多全新机遇。良好的分析技术会对输入数据进行预处理。例如,通过监测客户所处位置,企业能在客户接近潜在购买地点时,向客户的移动设备发送促销或折扣信息。而更加出色的技术则会将流数据与历史(已建模的)数据有机结合起来,从而做出更加明智合理的决策。举例而言,如果能将客户位置与其购买历史对应起来,企业就能向同一位客户发送量身定制的个性化促销信息,从而提高购买的可能性。
为从更加快速的数据处理中全面获益,企业必须对计算机集群进行有效利用——即通过组织有序的成百上千台计算机筛选海量数据。市场上有关数据快速存取的新型解决方案已如雨后春笋般涌现,每一种方案都为数据处理速度、耐久性和准确性提供了有力保证。数据加速能为实现更快的数据处理提供支持,利用计算机集群的软硬件升级,使计算机的运行效率得到前所未有的提升。
数据交互主要关乎数据基础架构的可用性。用户或应用会向基础架构提交查询要求,并期望在可接受的时间范围内获得响应。传统的解决方案已使人们能够轻松地提交要求、获得所需结果,获取切实可行的洞察力。但是,大数据的兴起催生出了许多全新的编程语言,阻碍了现有用户采用这些系统。此外,由于数据规模庞大,用户不得不等候数十分钟、甚至好几小时才能获得查询结果。
用户等待时间越久,获取洞察力所需时间也就越长,进而导致业务决策和满足客户期望的过程拖沓、延缓。可想而知,客户在向自身用户提供重要服务时,例如零售交易处理,可能会要求响应时间必须达到次秒级(毫秒)的水平。而在相对不太重要的业务中,客户能够接受的响应时间也许会稍长一些。数据加速能为实现更快的数据交互提供支持,即以普遍接受的方式将用户和应用与数据基础架构关联起来,并确保按要求快速提交查询结果。
为推动数据加速,企业应从众多不同的数据技术组件中选定适用的范围构建架构。这些组件包括:大数据平台、复杂事件处理、数据采集、内存数据库、缓存集群以及各种套装设备等。同时,架构组件只有经过正确的组合和架构配置,充分利用各自的互补优势,方能够实现最大价值。为了构建能够支持数据加速的数据供应链战略,企业可以从以下几点着手准备:
大数据的诞生,使相关技术门槛降至历史新低。但是,大数据同样也带来了各种挑战。为了应对这些挑战,企业应建立数据供应链,通过数据加速加快数据的迁移、处理与交互,从而使决策者得以更加迅速地捕获数据洞察力并采取行动,最终实现数据分析投资回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26