京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师为何有专业要求_层次级别_主要技能
数据分析师为何有专业要求
一、统计学专业
统计学贯穿数据分析的全过程,没有统计学基础,很难有专业的数据分析。数据分析的各个步骤,都要用到统计学的知识。
问卷设计时,问卷的信度是否符合要求?效度有多大?要用到统计学;
可以说,数据分析是统计学的应用。掌握统计学是数据分析师的基本功。
二、心理学专业
企业要提高市场占有率,就是要提高人心占有率,因此数据分析师研究用户心理的工作必不可少。数据分析师若懂得心理学,则能更准确的探测到用户的真实想法。
例如,在做品牌形象分析时,常会用到的是映射法,映射法就是基于心理学的数据采集方法。比如,让你对某所别墅进行描述,很难说得清,但如果让你选择图片,你对图片的认识就映射了你对这所别墅的印象。比如,你选择了劳斯莱斯车,很明显,你认为这所别墅的形象是高端的。
三、社会学专业
从经济学的角度看,人具有经济性,追求利益最大化,比如人们总是喜欢买物美价廉的产品,消费量通常会随着价格的下降而上升。但从社会学的角度看,人还具有社会性,受到社会群体心理的影响。作为数据分析师,如果没有社会学背景,很难对市场现象做出合理的解释。
四、人口学专业
人的特点影响市场的特点。年龄不同,家庭类型不同,则需求、价值观和行为特征都不一样。比如,儿童主要以生理需求为主,没有太多的社会需求;青少年开始追求时尚和潮流,但不是高收入人群,购买的频率高但可接受价格很低;人到中年,消费行为趋于理性化,强调功能、成本和技术优势;而到了老年,对价格比较敏感。
有人口学知识,数据分析师可以更好地理解到用户的差异性,有助于选择市场细分的维度,提出合理的精细化营销建议。
五、营销学专业
数据分析师常要为企业的营销决策提供支持,这就要求懂营销。
具有营销背景的数据分析师思路会更清晰、更开阔。当让他做竞争分析时,他会想到波特五个力;让他做环境分析时,他会想到PEST、让他做消费者偏好分析,他会想到科特勒用户决策流程;让他做企业业务状况分析,他会想到4P……
六、财务管理专业
诸如此类的财务管理问题是企业选择投资项目的依据、评价财务状况的指标、评估决策效果的量尺。懂得财务管理,得失一笔账,才能算得更清楚。”
数据分析师为何有专业要求·基本技能要求
可能乍一眼觉得数据分析师这个职位很高深很吓人,其实不然,各行入各眼,别看数据分析师岗位职责,任职要求这么多,说白了主要就三点要求:1)对相关业务的理解;2)掌握一到二种数据分析工具;3)良好的沟通。
数据分析师为何有专业要求·层次级别
1)业务监控:诊断当前业务是否正常?是否存在问题?业务发展是否达到预期(KPI)?如果没有达到预期,问主要问题在哪?是什么原因引起的?
2)建立分析体系:这些数据分析师已经对业务有一定的理解,对业务也相对比较熟悉,更多帮业务方建立一套分析体系,或者更高级是做成数据产品。例如:营销活动。分析师会告诉业务方,在活动前你应该分析哪些数据,从而制定恰当的营销计划。在营销过程中,你应该看哪些数据,从而及时做出营销活动调整。在营销活动,应该如何进行活动效果评估。
3)行业未来发展的趋势分析:这应该是数据分析师最高级别,有的公司叫做战略分析师/商业分析师。这个层次的数据分析师站的更高,在行业、宏观的层面进行业务分析,预测未来行业的发展,竞争对手的业务构成,帮助公司制定战略发展计划,并及时跟踪、分析市场动态,从而及时对战略进行不断优化。
数据分析师主要技能要求:
数据库知识(SQL至少要熟悉)、基本的统计分析知识、EXCEL要相当熟悉,对SPSS或SAS有一定的了解,对于与网站相关的业务还可能要求掌握GA等网站分析工具,当然PPT也是必备的。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12