
当谈到阿里巴巴的数据化营运时,我第一个想到的就是「人」,我们花太多时间讨论我们应该要做什么,却很少会反过来想,如果要落实数据化营运首先要从人做起,因此想跟大家分享的祕密是,数据化营运的内功是什么呢?简单来说,就是利用好「混、通、晒(呈现)」这叁大诀窍。
「混」出数据
现在很多数据分析师,在面对专业範围「怎么算回归」、「怎么画函数」的问题游刃有余,在实际工作中却缺乏商业意识。如果数据分析师缺乏商业意识,公司就成了「盲人」,分析师不知道该使用什么逻辑分析数据,而公司的决策层也得不到任何有价值的参考意见。现在绝大多数 CEO 都在抱怨,每天要看一大堆零零散散的数据。造成这种局面的塬因是,数据分析师只是单纯的把数据传递给管理者,却没有向管理者解释,这些呈现使用者行为的数据和能够在商业上产生价值的数据,两者间的内在关係。
CEO 没有多余精力解读页面浏览量(PV)和独立访客(UV)等数据。他们只需要知道数据是否有问题、反映了什么问题、最近有什么新的发现以及需要我们做出什么样的改变。简单来说,具有商业意识的数据分析师,在监测到网站上婴儿车销量增加的情况时,就可以预测到奶粉的销量也会随之上升。而且,也只有具备商业敏感的数据分析师,才懂得用什么数据驱动公司实现经营目标。
数据分析师如何才能拥有商业敏感?要靠「混」。例如:我要求数据分析师在给我的週报裡,一定要讲到业务方的动态。而且,我给他们的考评标準是,千万不要让我看见业务方发过来的週报裡有的内容,你的週报裡没有。我认为,要实现这一要求最基础的出发点是,数据分析师一定要跟业务方沟通,才有可能服务于他们。
打「通」混的数据
当你与业务人员混得够熟时,在看到某些数据后,你自然就会明白,「喔,这个数据跟商业决策绝对有莫大的关係。」当前,各电商公司在评估公司经营状况时,愈来愈依赖数据。但是,在今天,很少有电商敢完全肯定的说,自己掌握了呈现公司状况较完整的数据。对于公司主管而言,一是因为很多电商在开始收集数据时,会发现数据非常散乱,分布在不同的数据收集管道和营运人员——公司的核心员工手裡,这就使得数据流程非常「堵」;另一个问题是,绝大多数电商缺乏大数据营运的经验,只是收集了很「散」的数据,却不知道如何利用,也不知道该让哪些数据关联起来。
从客观角度来看,数据营运的各方面都可能存在影响数据精準度的「噪音」。数据本身是客观的,但它很容易受到产品和营运人员的影响——产品目的会影响营运人员的想法,营运人员的想法则会影响样本获取的精準度,造成数据在不同人眼中出现不同结果的情形。以转换率为例,市场部门和营运部门对转换率的想法并不相同,如果公司内部的数据标準没有打通、一致,公司决策时被数据迷惑和误导的可能性就会被放大。
因此你会发现,问题最后还是要归结到人和公司。如果不能「通」到商业环境裡,即使数据很多也没有任何价值。坚持带着业务问题观察数据或者带着数据观察业务,兼备二者的敏感,就是做到了「通」。有些人在很短的时间裡就能判断出数据是否有价值,就是因为「混通」了。
想做到数据的积累和沉淀,想要打通数据,建立合理的系统是不二之选。首先,做好数据安全工作,以保证公司内部不同职位的员工可以察看不同的数据;再者,统一不同部门的数据标準,使公司内部数据有统一的介面,避免混乱;最后,关联不同部门的数据,创造机会让数据的营运可以扩散至数据部门之外。「通」是「混、通、晒」裡最关键的连接点。以前,数据量没这么大的时候,公司「混」完就「晒」了,完全凭藉商业敏感营运数据。而现在海量数据成为主流,「通」也就成为了营运数据不可或缺的一部分。
「晒」出混和通的数据
「晒」(呈现)是一种在「混」和「通」基础上,产生出来的最终数据表现,是基于人、商业和数据结合后的一种看数据和用数据的方法论。在「晒」数据层面上,通常是透过数据回答这几个问题:业务好或不好,数据如何改变可以让业务更好,如何利用数据说明业务发现机会,甚至产生出新的商业价值。这些问题看起来是递进关係,其实不然,因为具体应该用数据解决什么问题,要根据业务的情境做决定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19