
大数据存储能否顺应时代的发展要求_数据分析师
大数据存储,可以认为是存储厂商基于现有大数据应用的特点进行优化的解决方案。
不久前去香港出差,刚下飞机就收到招商银行发来的一条短信,内容是告之香港有哪些商场在举办促销活动。不知道这是巧合,还是招商银行利用大数据的新成果,但是可以肯定,利用大数据分析可以为客户提供定制化的服务,实现精准营销。大数据正在改变企业业务模式,也让人们的生活变得更加便利和丰富多彩。
存储必须整合
大数据存储是一类单独的产品吗?赛迪顾问高级分析师陈靓并不这么认为:“把大数据软件与存储进行整合,就称为大数据存储,未免有些牵强。如果非要说出大数据存储的特征,那么我认为它至少应该能让大数据的‘4V’发挥出应有的效果,满足大数据对性能和扩展性的要求。”
“与其说大数据存储是一类产品,不如说它是下一代的存储架构。这种架构可以将传统的DAS、SAN和NAS有效地整合起来,以满足上层计算平台的要求。”Forrester Research首席咨询分析师戴昆表示,“大数据存储本身的性能与传统企业级存储并没有显着差异,它主要依赖于上层计算平台的分布式并行处理能力,但其扩展性一定要强。”
“在中国市场上,大数据应用还没有真正落地,许多用户谈的还是BI(商业智能)。而从国外的实践看,BI只是大数据的一部分,属于大数据的起步阶段,真正的大数据应用是近实时或实时的数据分析。”中桥调研咨询首席分析师王丛告诉记者,“计算、存储、网络等都与大数据的价值有关。大数据存储并不是一类单独的产品,它也可以通过类似公有云或私有云的方式提供给用户。应用和数据量的增加,对数据的存取提出了更高要求。因此,并行存储能力的增强对大数据存储来说非常重要。”
EMC Isilon存储事业部总经理杨兰江表示,大数据存储有很多实现方式,不过它应具备以下特性:海量数据存储能力、全局命名空间、支持标准接口、读写性能优异、易于管理维护、基于开放架构、多级数据冗余、多级存储备份等。
“存储产品并不像网络产品那样有严格的界线,因此很难将大数据存储单独划分出来。其实,大数据存储并不是只有分布式存储这一种方式,传统的存储也可以成为大数据存储解决方案的一部分。”华为存储产品线市场总监经宁解释说,“华为将大数据存储当成相对独立的一类产品,主要是从产品的主定位角度考虑的。华为有针对企业级应用的高端存储,也有针对中小型用户的通用存储,当然还有专门为大数据优化的分布式、可横向扩展的大数据存储。”
目前,业内并没有关于大数据存储产品的通用定义,但是综合考虑厂商的产品以及用户的需求,可以简单概括出大数据存储的特征:首先,大数据存储必须能够支持全类型数据,包括结构化、半结构化和非结构化数据,实现统一数据支持;其次,在保证可靠性的基础之上,大数据存储必须具备线性扩展能力,同时还要具有很强的批处理和实时处理能力;最后,在系统达到一定规模后,大数据存储平台的易用性和可管理性也是不可或缺的。
在大数据处理过程中,用户发现性能的瓶颈并不在计算层面,而在于海量数据的上传和下载。因此,极高的数据加载速率是大数据存储必须具备的特性。大数据解决方案通常包含数据存储、计算及分析,存储是大数据基础架构中的一部分。
凸显高性能、可扩展
对中国用户来说,大数据应用落地的关键是如何更好地让企业的IT决策者和架构师理解业务需求,建立适合企业业务特点的数据应用场景和数据管理架构,更好地利用企业现有的数据资产,而非盲目地进行所谓的大数据投资。“用户首先要考虑的是什么样的大数据应用才能为企业带来合理产出,其次再考虑大数据平台和存储,切勿本末倒置。”戴昆表示。
赛迪顾问的研究发现,中国使用大数据存储比较多的行业是电信、互联网、金融等,其他行业大多还在观望及测试中。中国用户对于大数据存储的需求首先是可靠和稳定,金融行业的用户非常重视这一点;互联网用户则要求大数据存储具有很高的I/O吞吐能力;电信行业的客户更青睐高性价比的大数据存储设备。
中国惠普有限公司企业集团存储产品部存储架构师张楠表示,很多中国用户会追求大容量和高性能,忽略了大数据存储本身应该具有的其他属性,这让用户在实际应用中很容易遇到一些障碍,比如无法将存储与大数据平台进行对接,无法在业务中充分发挥大数据存储的价值等。究其原因,主要障碍在于有些大数据存储产品没有开放的接口协议, 没有针对用户的大数据应用场景进行特别优化, 没有提供用户容易接受的易用管理方式等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10