京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据八大热点话题_数据分析师
1.数据科学与大数据的学科边界
这一问题综合了两个问题,即大数据的基本内涵与数据的科学问题。前者关注的是大数据的基本定义和基本结构。迄今为止,什么是大数据,在产业界、学术界并没有形成一个公认的科学定义,大数据的内涵与外延也缺乏清晰的说明。大数据区别于其他数据的关键特性是什么?IBM提出了3V的说法,即volume(体量 大)、variety(模式多)和velocity(速度快)。尔后又有人提出了另一个V,即value(价值),表示大数据虽然价值总量高但其价值密度低。另外,大数据是否就意味着全数据,还有待进一步讨论与澄清。最后,还需要为动态、高维、复杂的大数据建立形式化、结构化的描述方法,进而在此基础上发 展大数据处理技术。后者关注的是数据界与物理界、人类社会之间的关联与差异,探讨是否存在独立于应用领域的数据科学。如果存在数据科学,其学科问题的分类 体系又是什么?目前已有的共识是,大数据的复杂性主要来自数据之间的复杂联系。另外,新型学习理论和认知理论等应当是数据科学的重要组成部分。
2.数据计算的基本模式与范式
大数据的诸多突出特性使得传统的数据分析、数据挖掘、数据处理的方式方法都不再适用。因此,面对大数据,我们需要有数据密集型计算的基本模式和新型的计算范式,需要提出数据计算的效率评估方法以及研究数据计算复杂性等基本理论。由于数据体量太大,甚至有的数据本身就以分布式的形式存在,难以集中起来处理,因此对于大数据的计算需要从中心化的、自顶向下的模式转为去中心化的、自底向上、自组织的计算模式。另外,面对大数据将形成基于数据的智能,我们可能需要寻 找类似“数据的体量+简单的逻辑”的方法去解决复杂问题。
3.大数据特性与数据态
这一问题综合了三个候选问题,即大数据的关系维复杂性、大数据的空间维复杂性和大数据的时间维复杂性问题。大数据往往由大量源头产生,而且常包含图像、视频、音频、数 据流、文本、网页等等不同的数据格式,因此其模态是多种多样的。主要来源于多模态的大数据之间存在着错综复杂的关联关系,这种异质的关联关系有时还动态变 化,互为因果,因此导致其关联模式也非常复杂。大数据的空间维问题主要关注人、机、物三元世界中大数据的产生、感知与采集,以及不同粒度下数据的传输、移 动、存储与计算。另外,还需研究大数据在空间与密度的非均衡态对其分析与处理所带来的理论与技术挑战。而大数据的时间维问题意图在时间维度上研究大数据的 生命周期、状态与特征,并探索大数据的流化分析、增量式的学习方法与在线推荐。最后,研究大数据的离线与在线处理对时效性要求。
4.大数据的数据变换与价值提炼
这一问题主要由“如何将大数据变小”与“如何进行大数据的价值提炼”两个问题组成,前者要在不改变数据基本属性的前提下对数据进行清洗,在尽量不损失价值的条件下减小数据规模。为此,需要研究大数据的抽样、去重、过滤、筛选、压缩、索引、提取元数据等数据变换方法,直接将大数据变小,这可以看作是大数据的 “物理变化”。后者可看作是大数据的“化学反应”,对大数据的探索式考察与可视化将发挥作用,人机的交互分析可以将人的智慧融入这一过程,通过群体智慧、 社会计算、认知计算对数据的价值进行发酵和提炼,实现从数据分析到数据价值判定和数据制造的价值飞跃。
5.大数据的安全和隐私问题
只要有数据,就必然存在安全与隐私的问题。随着数据的增多,大数据面临着重大的风险和威胁,需要遵守更多更合理的规定,传统的数据保护方法无法满足这一要求。因此,面对大数据的安全与隐私保护,有大量的挑战急需得到解决,具体包括:大数据计算伦理学、大数据密码学、分布式编程框架中的安全计算、远程数据计算的可信任度、数据存储和日志管理的安全性、基于隐私和商业利益保护的数据挖掘与分析、强制的访问控制和安全通信、多粒度访问控制以及数据来源和数据通道的可信等。
6.大数据对IT技术架构的挑战
这一问题是对热点问题“大数据对于系统的要求”的新解读。大数据对于系统,不管是存储系统、传输系统还是计算系统都提出了很多非常苛刻的要求,而现有的数据中心技术难以满足大数据的需求。譬如,存储能力的增长远远赶不上数据的增长,设计最合理的分层存储架构已成为信息系统的关键。分布式存储架构不仅需要scale-up式的可扩展性,也需要scale-out式的可扩展性。因此对整个IT架构进行革命性地重构势在必行。此外,大数据平台(包括计算平台、传输平台、存储平台等)是大数据技术链条中的瓶颈,特别是大数据的高速传输,需要革命性的新技术。
7.大数据的应用及产业链
大部分大数据专家委员会的委员都认为,大数据的研究与应用一定要与领域知识相结合,尤其在开展大数据研究的初期,计算机领域的科技工作者一定要虚心向各领域的科技人员请教,真正了解和熟悉各领域发生数据的特点。针对不同的领域环境和不同的应用需求,大数据的获取、分析、反馈的方式有所不同。为此,针对不同行业与领域业务需求,我们需要展开数据特征与业务特征的研究,进行大数据应用分类与技术需求分析,构建从需求分析与业务模型,到数据建模、数据采集和总结反馈,最后到数据分析 的全生命周期应用模型。其实,不同的应用环境和应用目标代表了不同的价值导向,这对于大数据的价值密度有很大的影响。
8.大数据的生态环境问题
大数据作为21世纪的“新石油”,是一种宝贵的战略资源,因此对大数据的共享与管理无疑是其生态环境的一部分。对于大数据的共享与管理,其中所有权是基础, 这既是技术问题,也是法理问题。对数据的权益需要进行具体认定并进行保护,进而在保护好多方利益的前提下解决数据共享问题。为此,可能会遇到不少的障碍, 包括人们对法律或信誉的顾虑,保护竞争力的需要,以及数据存储的位置和方式不利于数据的访问和传输等。此外,生态环境问题还涉及与政治、经济、社会、法 律、科学等等的交叉影响问题。因为大数据将对国家治理模式、企业的决策、组织和业务流程、个人生活方式都将产生巨大的影响,所以这种影响模式值得深入研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12