京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据环境下的数据安全分析_数据分析师
随着互联网、物联网、云计算等技术的快速发展,以及智能终端、网络社会、数字地球等信息体的普及和建设,全球数据量出现爆炸式增长,仅在2011年就达到1.8万亿GB。IDC(IntemetData Center,互联网络数据中心)预计,到2020年全球数据量将增加50倍。毋庸置疑,大数据时代已经到来。一方面,云计算为这些海量的、多样化的数据提供存储和运算平台,同时数据挖掘和人工智能从大数据中发现知识、规律和趋势,为决策提供信息参考。大数据的发展将进一步扩大信息的开放程度,随之而来的隐私数据或敏感信息的泄露事件时有发生。面对大数据发展的新特点、新挑战,如何保障数据安全是我们需要研究的课题。
1 大数据的特征
大数据通常被认为是一种数据量很大、数据形式多样化的非结构化数据。随着对大数据研究的进一步深入,大数据不仅指数据本身的规模,也包括数据采集工具、数据存储平台、数据分析系统和数据衍生价值等要素。其主要特点有以下几点:
1.1数据量大
大数据时代,各种传感器、移动设备、智能终端和网络社会等无时无刻不在产生数据,数量级别已经突破TB,发展至PB乃至ZB,统计数据量呈千倍级别上升。据估计,2012年全球产生的数据量将达到2.7ZB,2015年将超过8ZB。
1.2类型多样
当前大数据不仅仅是数据量的井喷性增长,而且还包含数据类型的多样化发展。以往数据大都以二维结构呈现,但随着互联网、多媒体等技术的快速发展和普及,视频、音频、图片、邮件、HTML,RFID,GPS和传感器等产生的非结构化数据,每年都以60%速度增长。预计,非结构化数据将占数据总量的80%以上。
1.3运算高效
基于云计算的Hadoop大数据框架,利用集群的威力高速运算和存储,实现了一个分布式运行系统,以流的形式提供高传输率来访问数据,适应了大数据的应用程序。而且,数据挖掘、语义引擎、可视化分析等技术的发展,可从海量的数据中深度解析,提取信息,掌控数据增值的“加速器”。
1.4产生价值
价值是大数据的终极目的。大数据本身是一个“金矿”,可以从大数据的融合中获得意想不到的有价值的信息。特别是激烈竞争的商业领域,数据正成为企业的新型资产,企业都在追求数据最大价值化。同时,大数据价值也存在密度低的特性,需要对海量的数据进行挖掘分析才能得到真正有用的信息,形成用户价值。以监控视频为例,连续播放的画面中,可以产生价值信息的数据可能仅仅是一两秒。
2 大数据面临的安全挑战
正如Gartner所说:“大数据安全是一场必要的斗争。在大数据时代,无处不在的智能终端、互动频繁的社交网络和超大容量的数字化存储,不得不承认大数据已经渗透到各个行业领域,逐渐成为一种生产要素发挥着重要作用,成为未来竞争的至高点。大数据所含信息量较高,虽然相对价值密度较低,但是对它里面所蕴藏的潜在信息,随着快速处理和分析提取技术的发展,可以快速捕捉到有价值的信息以提供参考决策。然而,大数据掀起新一轮生产率提高和消费者盈余浪潮的同时,随之而来的是信息安全的挑战。
2.1网络化社会使大数据易成为攻击目标
网络化社会的形成,为大数据在各个行业领域实现资源共享和数据互通搭建平台和通道。基于云计算的网络化社会为大数据提供了一个开放的环境,分布在不同地区的资源可以快速整合,动态配置,实现数据集合的共建共享。而且,网络访问便捷化和数据流的形成,为实现资源的快速弹性推送和个性化服务提供基础。正因为平台的暴露,使得蕴含着海量数据和潜在价值的大数据更容易吸引黑客的攻击。也就是说,在开放的网络化社会,大数据的数据量大且相互关联,对于攻击者而言,相对低的成本可以获得“滚雪球”的收益。近年来在互联网上发生的用户账号的信息失窃等连锁反应可以看出,大数据更容易吸引黑客,而且一旦遭受攻击,失窃的数据量也是巨大的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01