
如何管理Java线程池及搭建分布式Hadoop调度框架
平时的开发中线程是个少不了的东西,比如tomcat里的servlet就是线程,没有线程我们如何提供多用户访问呢?不过很多刚开始接触线程的开发工程师却在这个上面吃了不少苦头。怎么做一套简便的线程开发模式框架让大家从单线程开发快速转入多线程开发,这确实是个比较难搞的工程。
那具体什么是线程呢?首先看看进程是什么,进程就是系统中执行的一个程序,这个程序可以使用内存、处理器、文件系统等相关资源。例如QQ软件、Eclipse、Tomcat等就是一个exe程序,运行启动起来就是一个进程。为什么需要多线程?如果每个进程都是单独处理一件事情不能多个任务同时处理,比如我们打开qq只能和一个人聊天,我们用eclipse开发代码的时候不能编译代码,我们请求tomcat服务时只能服务一个用户请求,那我想我们还在原始社会。多线程的目的就是让一个进程能够同时处理多件事情或者请求。比如现在我们使用的QQ软件可以同时和多个人聊天,我们用eclipse开发代码时还可以编译代码,tomcat可以同时服务多个用户请求。
线程这么多好处,怎么把单进程程序变成多线程程序呢?不同的语言有不同的实现,这里说下java语言的实现多线程的两种方式:扩展java.lang.Thread类、实现java.lang.Runnable接口。
先看个例子,假设有100个数据需要分发并且计算。看下单线程的处理速度:
package thread;import java.util.Vector;public class OneMain { public static void main(String[] args) throws InterruptedException { Vector<Integer> list = new Vector<Integer>(100); for (int i = 0; i < 100; i++) { list.add(i); } long start = System.currentTimeMillis(); while (list.size() > 0) { int val = list.remove(0); Thread. sleep(100);//模拟处理 System. out.println(val); } long end = System.currentTimeMillis(); System. out.println("消耗 " + (end - start) + " ms"); } // 消耗 10063 ms}
再看一下多线程的处理速度,采用了10个线程分别处理:
package thread; import java.util.Vector; import java.util.concurrent.CountDownLatch; public class MultiThread extends Thread { static Vector<Integer> list = new Vector<Integer>(100); static CountDownLatch count = new CountDownLatch(10); public void run() { while (list.size() > 0) { try { int val = list.remove(0); System.out.println(val); Thread.sleep(100);//模拟处理 } catch (Exception e) { // 可能数组越界,这个地方只是为了说明问题,忽略错误 } } count.countDown(); // 删除成功减一 } public static void main(String[] args) throws InterruptedException { for (int i = 0; i < 100; i++) { list.add(i); } long start = System.currentTimeMillis(); for (int i = 0; i < 10; i++) { new MultiThread().start(); } count.await(); long end = System.currentTimeMillis(); System.out.println("消耗 " + (end - start) + " ms"); } // 消耗 1001 ms}
大家看到了线程的好处了吧!单线程需要10S,10个线程只需要1S。充分利用了系统资源实现并行计算。也许这里会产生一个误解,是不是增加的线程个数越多效率越高。线程越多处理性能越高这个是错误的,范式都要合适,过了就不好了。需要普及一下计算机硬件的一些知识。我们的cpu是个运算器,线程执行就需要这个运算器来运行。不过这个资源只有一个,大家就会争抢。一般通过以下几种算法实现争抢cpu的调度:
这三种算法都有优缺点,实际操作系统是结合多种算法,保证优先级的能够先处理,但是也不能一直处理优先级的任务。硬件方面为了提高效率也有多核cpu、多线程cpu等解决方案。目前看得出来线程增多了会带来cpu调度的负载增加,cpu需要调度大量的线程,包括创建线程、销毁线程、线程是否需要换出cpu、是否需要分配到cpu。这些都是需要消耗系统资源的,由此,我们需要一个机制来统一管理这一堆线程资源。线程池的理念提出解决了频繁创建、销毁线程的代价。线程池指预先创建好一定大小的线程等待随时服务用户的任务处理,不必等到用户需要的时候再去创建。特别是在java开发中,尽量减少垃圾回收机制的消耗就要减少对象的频繁创建和销毁。
之前我们都是自己实现的线程池,不过随之jdk1.5的推出,jdk自带了java.util.concurrent并发开发框架,解决了我们大部分线程池框架的重复工作。可以使用Executors来建立线程池,列出以下大概的,后面再介绍。
有了线程池后有以下几个问题需要考虑:
考虑到这几点,我们需要把线程集中管理起来,用java.util.concurrent是做不到的。需要做以下几点:
组件图为:
构建好线程调度框架是不是就可以应对大量计算的需求了呢?答案是否定的。因为一个机器的资源是有限的,上面也提到了cpu是时间周期的,任务一多了也会排队,就算增加cpu,一个机器能承载的cpu也是有限的。所以需要把整个线程池框架做成分布式的任务调度框架才能应对横向扩展,比如一个机器上的资源达到瓶颈了,马上增加一台机器部署调度框架和业务就可以增加计算能力了。好了,如何搭建?如下图:
基于jeeframework我们封装spring、ibatis、数据库等操作,并且可以调用业务方法完成业务处理。主要组件为:
一般这个架构可以应对常用的分布式处理需求了,不过有个缺陷就是随着开发人员的增多和业务模型的增多,单线程的编程模型也会变得复杂。比如需要对1000w数据进行分词,如果这个放到一个线程里来执行,不算计算时间消耗光是查询数据库就需要耗费不少时间。有人说,那我把1000w数据打散放到不同机器去运算,然后再合并不就行了吗?因为这是个特例的模式,专为了这个需求去开发相应的程序没有问题,但是以后又有其他的海量需求如何办?比如把倒退3年的所有用户发的帖子中发帖子最多的粉丝转发的最高的用户作息时间取出来。又得编一套程序实现,太麻烦!分布式云计算架构要解决的就是这些问题,减少开发复杂度并且要高性能,大家会不会想到一个最近很热的一个框架,hadoop,没错就是这个玩意。hadoop解决的就是这个问题,把大的计算任务分解、计算、合并,这不就是我们要的东西吗?不过玩过这个的人都知道他是一个单独的进程。不是!他是一堆进程,怎么和我们的调度框架结合起来?看图说话:
基本前面的分布式调度框架组件不变,增加如下组件和功能:
这样,整个改造基本完成。不过需要注意的是架构设计一定要减少开发程序的复杂度。这里虽然引入了hadoop模型,但是框架上开发者还是隐藏的。业务处理类既可以在单机模式下运行也可以在hadoop上运行,并且可以调用spring、ibatis。减少了开发的学习成本,在实战中慢慢体会就学会了 一项新技能。
界面截图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13