
从百度糯米的“517吃货节”透视大数据的挖掘应用
5月17日,谐音“我要吃”,今年这个日子被百度糯米盯上了,推出517吃货节。从5月16日至18日在北京、上海、成都、西安、厦门5大城市,利用百度大数据筛选出用户关注的特色菜品,找出当地最地道的top10餐厅。活动期每天的9:17至20:17,数百道秒杀菜品只售5块1毛7分钱。
为配合此次活动,百度还推出了5大城市数个小吃在各地的地道餐馆Top10榜单。例如,在北京就有麻辣烫、卤煮、肉夹馍、拉面等菜品,针对这些菜品,百度糯米推出北京最好吃拉面top10餐厅,最地道卤煮top10餐厅等。
大数据:支撑餐饮团购的第三种模式
目前,餐饮团购主要包括美团、大众点评、百度糯米,但三者的内在驱动力却有所不同。
美团是典型的交易驱动模式,业务比较单一,利润主要来自于团购业务的交易佣金。由于起始阶段缺少其他业务带来的用户基础积累,美团正是通过自身强大的运营能力,获得竞争优势,从而占据团购行业的半壁江山,这既是美团的优势,也同样是美团的劣势,毕竟运营能力是可以被复制的。
大众点评是典型的信息驱动模式,依托其前期商家点评信息的积累,大众点评拓展了团购业务,且已经成为大众点评的主要利润来源。大众点评在点评信息方面的领先优势,一方面为其积累了商家资源,另一方面积累了用户群,从而为其团购业务的开展奠定了基础,但是点评的业务集中于一二线城市,这造成了其团购业务在运营能力上与美团的较大差距。
糯米网在百度收购后得到了资金和流量的支持,稳固了其在团购市场的位置。同时,百度借助自身的技术力量,为糯米开拓新的数据驱动模式。这次517吃货节可以看做是对这一模式的“大练兵”。
所谓数据驱动,就是依托百度对搜索数据、地理位置、用户浏览数据的综合分析,提炼出针对特定对象的有效数据,并以此辅助相关产品的运营和推广。在与餐饮O2O的业务结合中,百度想到从海量数据中找出某地用户,最喜欢的小吃,以及这些小吃在哪些餐馆做得最好,然后才是邀请这些餐馆参加百度糯米团。通过数据分析,找到大多数人的喜好,以此吸引更多用户参与,这是数据驱动模式的简单逻辑。
数据分析:简单背后的复杂过程
这个简单逻辑背后蕴藏的是复杂的数据运算,我们看到的结果是一个个美食餐馆top10榜单,但支撑这些简单结论的是庞杂的数据和复杂的运算。
比如要找出上海最会做剁椒鱼头的十家饭馆,要最终确定关键词“剁椒鱼头”的搜索目标是找到上海的餐馆,第一步要剔除搜索“剁椒鱼头”只是为了找到这道菜的做法,或者是了解这道菜的具体常识的其他需求;第二步是要确定搜索目标在上海;第三步是与具体制作剁椒鱼头,且活动用户好评的餐馆匹配起来;第四步是通过数据量排序,找出餐馆的顺序。
据了解,为了保证榜单的准确性,百度糯米还邀请了各地烹饪协会的专家参与评价,并最终确定榜单。这有效的避免了仅仅依靠大数据分析可能导致的偏差,毕竟机器跑出来的数据,可能有机械分析的局限性,难免遗漏那些“酒香不怕巷子深”的老店。
据百度内部人士介绍,这些更有意义的数据,不是来自高频词,而是从百度搜索中的“长尾词汇”挖掘分析得来。他们不像单一词汇那样容易成为高频搜索词,每天有几十上百万,甚至过千万的搜索量。他们是几个词,或者词组甚至是一个完整的句子,每天只有几千上万的搜索,但是却更具体也更有价值。
大数据分析的复杂主要是如何让网络更有智慧,让机器组成的神经网络能深度学习人的思维,总结出人群中的规律。为了提升这一能力,百度正在开展“百度大脑”项目,目前它具备了两三岁孩子的智力。但是百度相信:随着计算成本的飞速下降和计算能力的飞速提升,未来十几二十年,这样的大脑或许比人脑还要聪明。
显然,对于“剁椒鱼头做法”、“剁椒鱼头北京”、“剁椒鱼头哪里好吃”,这几个搜索用词所蕴含的目的和意义是不同的,通过对其数据相关性的存储和分析,可以让“百度大脑”学习到更多内容。在未来的某一天,它又会告诉我们更多我们想知道的东西,而这种结果的输出,无疑会越来越精确,且更有价值。
大数据格局:为你做决策
百度糯米通过517让我们体会到了百度大数据的威力——吃什么上哪吃,我来帮你做决策,你所需要的就是掏腰包。
百度的目标是要打造一个弱化人脑的智能数据平台,让数据分析帮助人来决策。这与百度做搜索引擎的出身有关。而且,搜索引擎是用户主动行为,通过收集用户主动需求的数据,百度可以知道用户想要什么,通过数据分析,百度就能够知道用户喜欢什么。久而久之,百度就可以参照众人的决策过程,去帮助有需求的用户进行决策或者是推荐用户喜欢的内容。
同样,阿里和腾讯也在做大数据方面的开发。稍加分析我们就会发现他们各具优势,阿里的数据与百度类似,而且也更精细,比较明确的体现了用户的购物需求。因此,阿里在处理大数据方面需要的是数据整合能力,把合适的数据分配到所需的卖家或买家手中,对智能性的要求不高,却有极大的商业价值。
而腾讯的数据来源主要是社交网络,数据量大且信息点分散,要深入挖掘出其中的有用数据需要一个更强大、更智能化的“大脑”,因此,要使其发挥出与百度目前的相同的智能水平,其数据挖掘能力必须高过百度,因而难度较大。不过,腾讯可以在个别领域有所突破,比如对用户所需资讯的匹配上,可以做些工作。
综合来看,百度借助搜索引擎,可以实现数据广度与分析智能化要求两个维度的最佳卡位。可以在较短时间内实现数据分析的稳步智能化,在商业拓展上虽然不会有阿里那样直接,但却会给用户更多惊艳的感受,本次517吃货节,就可以算作一例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26