
上次说到了Hadoop是目前最流行的大数据工具,其核心是HDFS来存储数据和MapReduce来处理数据,但它又不仅仅如此。后来,围绕着 Hadoop相继出现了一系列的应用。比如存储结构化数据的HBase,用于和传统数据实现数据迁移的Spooq,SQL接口Hive,用于工作调度的 Ozzie,以脚本取代代码完成MapReduce的Pig,机器学习工具集Mahout等等。羽翼渐丰的Hadoop已经一步步从“工具”发展成为“平台”和“生态系统”。可是,一条技术鸿沟却横在了众多企业面前。一方面,无论是金融还是电信,各个领域的大公司都有海量数据处理的需求。而另一方面,他们的IT部门大都不具备部署、维护大规模Hadoop集群,和开发Hadoop应用的能力。而他们以前倚重的IBM,Oracle也没有这样的能力。
正是看到了这一点,以Hadoop为核心的一些咨询公司相继成立。经过市场洗礼,目前呈现出Cloudera,Hortonworks和MapR三足鼎立之势。三家的产品我都使用过,以后两家为主。下面就分别谈谈各家的优势和劣势。
Cloudera 成立于2008年,是三家中成立最早的,目前为止客户资源最多,技术储备时间最长,规模总量最大。背后有Intel做坚强后盾。其产品线以企业级的平台管理和监控著称,其Hadoop用户界面Hue也十分友好。当然,Cloudera的许可证价格不菲,都是按年按机器收钱,这一点和Oracle没什么区别,可能和CEO的Oracle前高管的背景有关。
Hortonworks 成立比较晚,是从Yahoo中剥离出去的,也算是嫡系正统。和其他两家最大的不同是,Hortonworks坚持百分百开源的理念,完全只靠咨询服务赚钱。我是开源的拥护者,也十分看好它未来的发展。个人认为Hortonworks的拳头产品是Hadoop自动部署工具Ambrari和资源管理器 YARN。其中YARN的意义甚至超过了Hadoop本身,这一点会在以后的文章中讨论。另外,Hortonworks在12月份刚刚IPO,希望充裕的资金有助于加速它对开源项目的贡献。
MapR 和原生的Hadoop相距最远。它完全重写了文件系统和HBase实现,从而大幅提高了系统性能。它的读写性能都数倍于原生Hadoop。重新实现同时也简化了Hadoop的安全框架。但问题是和原生的HDFS和HBase不可能完全兼容,使得它在产品配套更新方面总是慢半拍。应用开发者也往往要付出额外的精力去考虑兼容Hadoop。当然,权衡投入产出比,这样的付出也许是值得的。最近MapR刚刚宣布其MapR Database可以免费使用,大概也是看到了自己的优秀产品在接受度上的尴尬。此外,MapR和Google走得很近,也等到了Google风投的资助,其产品通过脚本程序可以很方便地部署到Google计算引擎。很荣幸MapR接受了我对其脚本的小小补充。
大数据市场是一块大蛋糕,三家公司应该会愉快地玩耍一段时间(除非被其他巨头吃掉)。至于长远来看,谁会是最大赢家,以及Hadoop还能火多久,取决于市场,资金和技术等诸多因素的影响。技术层面来看,我们也许可以从近两年的发展略窥端倪,请看下篇“Hadoop之技术未来”。
原文链接:http://blog.csdn.net/tongqqiu/article/details/42138295
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13