京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:创造崭新的生存环境_数据分析师
大数据,已经为人类创造出一个崭新的环境。信息技术使人类置身于一个崭新的数字化的数据环境,这个环境一方面扩大了人类的理解,另一方面,作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。
各行各业,当下是言必称数据。那么究竟何为大数据呢?根据我的理解,如果说互联网是关于“物”的,那么大数据就是关于“人”的,所以说只有关于人的数据才能称之为大数据。大数据并非数据大。纯粹从量上看,大数据在互联网上早就存在了,在其基础之上,催生了整个搜索产业。可当下时髦的“大数据”一词却有所不同,它所展示的是以网络为依托的新型社会媒体的一个方面。由于直接与人相关,大数据成了金矿,有待人们进行数据挖掘,并从中寻求各种机会。数据挖掘已是相当成熟的领域,它把人的行为的结构化数据与其背景和人口统计学的信息相结合,已经产生出很多成果和应用,如有的放矢的广告和营销等。人们可以把社会媒体大数据中提取出的自然语言文本的情感挖掘视为一种数据挖掘的自然延伸。由于大数据的无限开放性,未来的潜力甚至更大。
人的行为维度具有无限的可能性,但人的资源却又是有限的。那么如何协调无限和有限的关系?由于有了海量的数据和强大的计算处理能力,有了人与人、人与物的互联互通,就是可以成就人的行为的无限可能性。举个例子来说,电子商务把这一点体现得淋漓尽致。但传统的数据由于属性有限,个体参与度较低,其价值预期比例大,即数据处于压缩状态,而无法协调无限和有限的关系。大数据体现的结果就是将传统的数据“解压缩”,使其数据密度大大减小,从而放大个体数据的效应。由于大数据是关于人的,那么它就不单是一个技术问题,而且也是一个管理问题。认识到这一点就要破除传统的管理办法,将数据打通,使其不断更新,避免产生“数据孤岛”现象。那么,首先就要给出“全量数据”,也就是说,关键的数据不能缺失;其次,那些关键信息是不能靠专家规定。
大数据是关于人的,可是它们却都要被计算机处理。因此关于人的数据一定要有关于原始大数据的“元数据”,它们是为机器服务的。必须通过元数据的语义标示并赋予其意义,才能被机器处理。因此,若想从数据中发现知识,就必需大量的元数据。元数据就好比影视剧中的“桥段”,将机器中的原始数据与人的行为连接起来。而大数据挖掘技术恰恰就是针对元数据的。尽管如此,大数据还是有其无法企及的地方。大致可以归纳为以下几点:不能没有有效的商业模式,不能替代管理的决策力,不能保证消除噪音,不能进行无目的的知识发现,不能一次建模终身受益,不能替代领域专家,不能忽略数据标注,等等。同时也要看到,大数据并非一个终极阶段,它的出现不过是人类历史进程的一个环节,其重要意义在于是计算机技术为整个人类带来变革中的一步。回顾历史,计算机从上个世纪50年代起就在人类历史上开始了潜移默化的革命,其根本标志就是“数字化”,以及物理世界和虚拟世界的无缝接合。
既然是历史的一个发展环节,那么也就可以对未来趋势做出一定的预测。与以往历史上其他重要变革都是一样的,要通过资源——大数据——的原始积累,再过渡到商业和社会服务的差异化(即因人而异),直到人类对虚拟世界的行业和社会服务加以规范以实现公平合理的数据资源分配。始于18世纪的工业革命经历了一百多年,但这次数字的革命将以更快的形式发生。由大数据引发的下一代技术很可能是更大规模的、面向数字化行业的转变。因而,使得现在物理世界的众多传统行业将向数字世界全面或部分转换和融合。这种转变也让许多现在需要众多专家的领域以另一种形式出现。具体可以体现在很多行业的在整体的“食物链”的上下游的改变。医生、科学家和教师等,到了那一天或许变成为大数据输送原料的数据采集者和分析结果的“工人”。
在工业社会,通过利用人们日常生活所留下的各种数据,便可以掌控人的生活方式、习惯、下落以及社会关系等。而到了信息社会,这些数据必然会被数字化,因而人们的各种道德行为、伦理准则和社会生活也会随之产生相应的改变。信息技术使人类置身于一个崭新的数字化的数据环境,这个环境一方面扩大了人类的理解,另一方面,作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。任何技术都倾向于创造一个新的人类环境。而信息技术、电脑网络乃至最近问世的大数据,已经为人类创造出一个崭新的环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20