
[一切的结果都是取舍的结果。]
这两天粗读大数据。发现了一个问题,提出了一个疑问。
发现的问题是:大数据与大脑有相关性。大数据在日常生活中已经开始应用广泛,它的本质不是传统的数据统计带来的简单的因果关系,而是数据的相关关系。在相关关系分析法基础上的预测才是大数据的核心。这让人自然会想到大脑的功能,每个人的思维就是一个大数据处理体系,如果有的人擅长去寻找不同事件之间发生的因果关系,那么这个叫做因果错觉,因果错觉容易发生在女性身上,因为女性因性格敏感等特点,会不自觉的将事情发生的结果,采用自己主观判断来归因,但事实上,事情之间的相关关系才是真正的关系。人的思维体系中,相关关系更加重要,相关关系代表调取大脑中的既往相关经验,来处理眼前的事情,更加客观。
大数据将开启一次重大的时代转型。信息广速度快,是很好,可是这不是最重要的,最重要的是不要让数据无处不在。大脑就像数据仓库,在数据充满我们的大脑、生活、生命中时,如果不去清理,不去遗忘,很容易一脑子浆糊,身心不舒畅。任何环境下我们都需要在纷繁的情况里简化问题。
我的疑问是:怎么删除。在这个信息碎片化的时代,如何做一个自我的搜索和过滤器,最好做成一个芯片,安放在我的手腕处皮肤下,这样,我就可以快速的找到我想看到的东西,忽视噪音,更加直接的去感受和了解自己。因为路径缩短,我便可以将时间放长,慢慢的去体会和感受,就好像小女孩慢慢的舔一个棒棒糖,而不是猪八戒吞一个人参果。这才是我要的密度和质量。
芯片是个玩笑, 出色的信息提取能力能够促进一个人的决策,一个人的一念一息及多年慢慢形成的价值观才是做选择的依据。你是不是有和我一样的经历,上千张照片中,删还是不删是个问题。怎么确定保留哪张,根据什么原则,每个人都有不同的原则,有的人认为,人最全的一定要留,有的人认为背景全的一定要留,有的人认为留表情最好的,有人认为留姿势最美的,甚至有的认为没对好焦距的朦胧的才是最有意境的。而我应该最清楚我怎么筛选,艺术家罗丹说,雕像就在那块石料里,我只是将那些不要的东西去掉了。但是要知道雕像到底是什么,只有我自己才明白我自己到底要雕什么。看书也是一样,书籍能使一个人瞥见这个世界的一角。是你自己选择去瞥见哪一角。
对于大数据中垃圾数据的删除和遗忘处理,早已有人考虑过这个大课题并书写出来警醒大家。
对于个人生活中的删除,我没有找到特别好的方法,只能试试这样考虑:取和舍。一切的结果都是取舍的结果。拿处理碎片化信息举例,如何在微信圈中过度的被动文字中进行选择,而不是失掉独立思考的能力被一条又一条自动跳出来的新闻头条,推送提醒,对话提示等所左右:1)减少重复阅读的数量;2)选择激发自己的动力和能量的内容阅读;3)筛选过滤,超过10条都不会看的公众号可以删掉了,这代表你试错成功,那原本就是你不需要的信息;4)限定时间,可以常规,但必须节制,减少刷新次数;5)尝试每周至少有一天不看微信,将清净归还自己,不要让一个功能控制了你,更不允许左右你的心情。弹性调整是对自我的一种负责。也是对自我是否足够认知的衡量,越是了解自己越是容易根据内心变化和外在影响来及时调整状态。
日本可能因为资源集中而紧缺,一直很倡导简生活,最近很流行的一位日本女士所著的一本书《断舍离》,将人身边的外物采用各种方式进行清理,代表对内心的一种扫除力,从而保持一种简约清爽的生活态度。还有很多其他方式对生活进行删减,试试断食(辟谷),试试冥想训练,看网上写过一个训练,基本要求为整天不语,不带手机,不带手表,抛开时间和事件和想法的概念,体会真正的当下,自己面对自己。
从心理学的角度,做出选择-同时意味着舍弃其他的可能性-是一件异常困难的事情。造成这个困难的无非是利弊两个字,但因利弊两个字背后掺杂了太多的心理变量,因此难倒了古往今来多少英雄好汉。为了有能力更好的进行抽象的思考和决策,挑战自我,尝试一下删删删删的效果吧。
《互联网周刊》主编姜奇平为《删除》那本书写了序言,头一次想用截图的方式给人看,生怕破坏对人家思想的精妙之处,一个序言可以写成这个样子,这让人情何以堪。
参考书目
1、[英]维克托-迈尔-舍恩伯格著 盛杨燕 周涛 译 《大数据时代:生活、工作与思维的大变革》 浙江人民出版社
2、[英]维克托-迈尔-舍恩伯格著 袁杰 译《删除:大数据取舍之道》 浙江人民出版社
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16