
马云这种天才很难復制
很多创业者染上了一种坏毛病,什么事儿也没做就觉得特别牛,好像自己就要成功了。
我们公司有个经验叫发布会定律,这点分享给创业者:凡是需要开发布会才能够让大家知道的産品,一定不是好産品。好的産品不用开发布会,也不用在行业里站起来振臂一唿。创业者多跟用户説话,多去了解用户的想法,然后让用户形成口碑。
我们以后少讲点儿大话、空话,我们的産品还没有找用户去验证,就宣布要革谁的命,谁会相信呢?我们应该悄悄地进村,枪声都不要,然后等到巨头们发现的时候,我们産品几乎已经上亿了,其他企业想抄已经来不及了。
塬来我特喜欢跑会上讲话,讲完了之后,我自己体力有限、兜里钱有限,自己还没来得及干,发现都被巨头们干了。
现在不少创业者融了很多钱,建议他们不要做那么多演讲。因为除了你的竞争对手会认真研读你对行业的分析,用户永远会问一个问题,“大哥,我为什么用你的産品?你的産品给我创造什么价值?我怎么用?我在哪能找到?”
所以,任何伟大的公司,我们不要看他今天多牛,我们应该像他们当年一样,埋头扎在用户中,更多去关注我们的産品。
我等飞机的时候经常看马云演讲,觉得讲得挺好。但是我发现,马云能够成功,他一定有我们所不了解的一些独特能力,比如説领导力、前瞻性,比如説他对团队的鼓舞。但是很多创业者不具备那样的能力,看到的只是马云天天在对外讲话,出席各种会议,很多人只学会了这一点,所以依然收获不了他那样的成功。因此,马云这种天才很难復制。
所以,对绝大多数人来説,可能我们没有更多的时间去説这些话,只能把自己有限的精力花在内部産品的管理、经营和打磨上。
真正的大数据时代才刚刚开始
无线互联网将成就下一个时代,有人谈工业4.0,有人谈IOT,我更喜欢IOT这个概念。
IOT最大的不一样是什么呢?首先,很多人把它庸俗化,叫做物联网。其实,物联网是一个技术概念,加了一些传感器,而事实上IOT不仅仅是在技术上加一点传感器。它最重要的是把産品互联网化,把商业模式互联网化。未来最好的商业模式,就是你如何通过IOT的技术做出一个産品,把这个産品和你的用户和企业连接起来。所谓工业4.0、IOT,讲的都是这个概念。
IOT其实会给大家提供更多的机会。当大家都站在这儿羡慕小米,或者羡慕那些新兴企业的时候,有些企业成功了之后往往会做个总结,説某某时代已经结束了,市场上第一、第二已经出来了,不需要大家再进入了。
错了!想想所有能看到的东西,从汽车到房子,从电灯到开关,从眼镜到手表,甚至工业化里的车床、集装箱、运输设备,如果都变成智能化,中国未来5年会有200-500亿臺设备接入互联网,它们7×24小时産生的数据那才叫大数据。真正的无线互联网、真正的大数据时代才刚刚开始。
当今天大家觉得手机、互联网就这样了,我恰恰觉得很多东西还没有被发明出来。真正的创新,是用互联网来改造一个传统的商业模式。对所有的创业者来説,这意味着更大的机会。
我很欣赏《失控》作者凯文·凯利,最近跟他有一次对话,他説90%的东西还没有被发明出来,我非常认同。如果再引申一句话,很多传统的商业领域都可以被互联网改造,所有这些,我认为都叫IOT。
早几年,总説中国年轻人创业没有资金,所以我们更多在“忽悠”有钱人拿出钱投资。那时天使很稀罕,今天遍地都是天使,我们的天使投资人肯定超过了硅谷。所以,今天大家融资已经感觉不缺钱了。
这几年,随着很多创业营的宣传鼓动,创业精神已经深入人心。现在年轻人越来越多从大公司离开,他们都愿意去创业,而且有很多人支持他们创业。是不是説我们的创业就很顺利了呢?
最近去美国,我发现了一个重要的变化。塬来在美国有很多孵化器,中国把孵化器学过来,但很多地方把这个经给念歪了,变成了房地産,给创业者提供办公的地方。其实真正的创业者不稀罕办公地点,连办公的地方都搞不定,在车库、卧室里开发不了程序还叫什么创业者?美国如今出现了很多“加速器”,其中有很多创业者的人脉,他们定期把创业者找来,请很多师傅、导师,给这些创业者去答疑解惑。在商业模式、産品策略、推广方式方面,得到这些导师的帮助,这才是对创业最大的加速。
CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16