京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的主要内容仍是结构化计算_数据分析师
日常业务中会出现各种各样的数据分析问题,但究其本质,其主要内容仍然是结构化数据的计算。比如:
指定时间段,计算各营业网点的月销售额比上期和同期比。
实现思路:对销售数据按时间段过滤,再按照营业网点、年、月进行三级分组汇总,最后进行跨行组的有序计算。
找出收盘价连续增长超过10天的股票。
实现思路:将日交易数据按照股票分组,组内按照日期排序,计算出股价的增长额,计算出连续正增长的天数,过滤出连续正增长超过10天的股票。
将合同信息、付款信息等不同来源的数据关联到项目付款进度中,并找到逾期未付款的项目。
实现思路:首先进行异构数据源之间的关联计算,之后进行分组汇总,最后进行过滤。
可以看到,这些日常数据分析问题大都可以分解为结构化数据的过滤、分组、汇总、排序、排名、关联等算法。
当然,偶尔也会出现模型或预测类的数据分析问题,比如:找出哪些商品之间存在较高的相关度,预测哪只股票将会上涨等等。这类算法需要的数学知识太多,日常工作人员一般不会掌握。这种分析在数据分析事务中非常重要,但并不是日常数据分析的主要内容。
日常数据分析的主要内容仍是结构化数据计算,因此很多工具都支持此类计算,比如:R语言、Python、SQL、集算器等。
R语言提供有dataframe数据类型,支持结构化数据计算。但R语言的设计初衷是进行科学数据的统计分析,重点在于矩阵和向量的计算,因此在结构化数据计算方面缺乏专业性。
事实上,dataframe只是R语言新增的功能,模型预测类的算法才是R语言的重点,比如:回归分析regression analysis、方差分析ANOVAanalysis、一致性评估Agreementevaluation、贝努利分布Bernoulli distribution等等。这些算法在日常数据分析中很少用到。
Python有第三方函数库pandas,支持结构化数据的计算。但Pandas的设计目标仍然是科学数据的统计分析,而不是结构化数据的计算,因此在这方面并不专业。和R语言类似,Pandas的功能也是围绕模型和预测展开的,在日常数据分析中很少用到。
可以看到,支持结构化数据计算的工具虽然不少,但专业的并不多,算来算去,还是老牌计算语言SQL更专业。
SQL的设计目标是纯粹的结构化数据计算,专业性更强,而且应用面非常广。
但是对于日常分析来讲,SQL也存在不足之处,比较突出的是:应用环境复杂、不擅长有序计算。SQL的安装部署、维护管理非常复杂。SQL数据集本身缺乏序号,因此在有序计算方面存在天生的短板,比如同期比、比上期、相对区间取数、分组中的排名、分组中取前后几名等等这些是日常数据分析中常见的问题,开头提到的几个例子也大多和有序计算相关,用SQL可以解决此类问题,但难度较大。
集算器的设计目标是纯粹的结构化数据计算,这一点和SQL类似。
相对来讲,集算器的应用环境比较简单,安装部署毫无难度。集算器支持从数据库取数,也可以直接读取Txt、日志、Excel中的结构化数据。另外,集算器的序表天生具有序号,器可以轻松上面提到的有序计算。不过集算器在外存计算和内存计算的语法不,需要更新另一种写法,不如SQL语法的一致性好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27