京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从大数据到深数据,在过去的10个月,我主持参与了麻省理工的“IDEAS中国”项目——一个由30多位中国商界领袖组成的,为期10个月的创新之旅。今年,该项目招收了中国一个主要国有银行的数位高管。这个团队的目标之一,是在大数据和其他相关的颠覆性技术到来时,仍可以重塑他们组织的未来,这也使我更多地接触了解了中国经济。正如阿里巴巴颇有远见的创始人马云所说,“五年后,我们预计人类纪元将由信息技术时代转变为大数据技术时代。”

但是,“数据技术”时代、“大数据”时代究竟意味着什么呢?现在,它往往意味着谷歌、亚马逊、Facebook和苹果这类大公司,这些我们曾经喜爱现在却越来越怀疑、不信任和恐惧的公司,会在你毫不知情时,收集你的数据,并转卖给其他公司,当你注意到出现在屏幕上的精准投放的网络广告时也就不足为怪了。有趣的是,最初人们对于美国的这些大数据帝国非常积极的看法现已转向欧洲及世界许多其他地方,包括北美。爱德华·斯诺登事件使我们大家都对大数据的误用更加敏感。但是,这只是表面问题,真正的问题更深层。
毫无疑问,大数据创造了许多全新的可能性, 但同时我认为我们应该明确地区分开浅层次的大数据与深层次数据。所谓浅层次数据,指的是有关别人的数据: 别人说了什么,做了什么。而这几乎正是目前所有大数据所包括的内容。
而深层次数据是帮助个人和社会来认识他们自己的。深层次数据就像一面镜子:它让你认识你自己—无论是作为个人还是作为社区一员。在我过去二十年的职业生涯中,许多团队和机构在我的帮助下进行了一些有重大意义的创新及革命性的变化。我从中所学习到的一点就是:产生革命性变化的关键就在于清楚地认识自己。这就是为什么深层次数据是很重要的。它对未来的机构,我们的社会以及整个世界都非常重要。
但是如今大数据的所作所为往往是相反的:大数据被用来操纵我们的行为,用我们从没想要的广告来对我们狂轰乱炸。表面上大数据用于将人类思维外包给算法,以降低习惯性思维边界内的意识水平。深数据,如果以正确的方式加以研发和成长,可以帮助我们提高认识水平,并将利益攸关方的意识体系转变过来,从对自我系统的认识(我自己的筒仓意识)转变到对生态系统的认识(整体意识)。
让我用两幅画面简单总结一下表面的大数据和深数据的区别:
从科学1.0到科学2.0的旅程是将科学观察这一笔直的望远镜掰回来到自我观察的过程——这个自我指的是我们的个人和集体的统一。
从本质上说,IDEAS的参与者都讲到了以下变化:
•思维:从单纯接受老模式,到创造性思维
在过去的这几个月,参加活动的这些高层领导们被分成四个小组,每个小组都试图尝试一些新的方法,来寻求未来的机会。令我吃惊的是,每个小组都开发出一种跨组织的合作平台原型,每个利益方都能通过这个平台用数据进行沟通。所有这些平台的建设原型都还在早期阶段,不过有一点是这四个小组都反复提到的,那就是大家思考问题要从“我”转到“我们”,从“自我”转到“整体”的重要性。
例如,今天我们用国民生产总值GDP来衡量经济进步。国民生产总值GDP是社会经济表面数据的一个很好的衡量。但是用什么等效的深数据工具来衡量一个社会真正的经济进步?我相信这样一个衡量系统应该植根于真实的社会发展成果(例如,预期寿命),以及个人和社区(如生活质量)的发展状况。去年Presencing研究所,GIZ全球领导学院(德国发展合作部)和位于Bhutan的国民幸福指数中心联合发起了全球福祉实验室(Global Wellbeing Lab),该实验室把世界各地来自政府,企业和民间社会的领导人联合在一起,来开拓寻找新的指标和深数据工具,帮助社区和社会生态系统观察自己,建立观测衡量社会运营的新模式。
今天你在哪里能看到这样的新的指标体系或深数据的工具在生根发芽?我们可以从这些早期例子中学到什么?深层数据对你自己意味着什么?在你自己的生活和工作中什么是快乐幸福的真实来源,哪些指标可以以更有意义的方式帮你看到和感觉到自己的发展?我们如何才能共同开拓,实现商业,社会及个人从大数据到深层数据的转变?这都是我们要思考的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09