
电子商务从大数据中挖宝必备五大要素_数据分析师
提到电子商务,自然会联想到大数据,如今“大数据”频繁地出现在媒体上,通过大数据,商家可以收集和分析数据,了解客户的购物模式和消费体验,从而改进产品设计,调整电子商务策略。
随着企业处理的数据量越来越大,数据处理工具的智能化程度越来越高,处理速度越来越快,价格也越来越实惠。大数据分析不仅仅是一种趋势,而是许多大型电子商务公司必不可少的一项工作内容。
数据集往往非常庞大,很难用传统的数据库管理工具进行处理,截至2012年,数据集由几十兆字节至数拍字节的数据组成。这些数据包括访问网页、登陆、在线交易等等。目前数据集的规模在不断增大。
非结构化数据,比如每分钟有100小时长度的视频上传到Youtube,每天约有1.75亿条新发布到Twitter上的信息,这些数据容量大,难以处理,其迅猛增长的态势对我们的数据处理能力提出挑战。
企业应使用相应工具对数据进行压缩和筛选,仅展现与特定内容相关的数据。目前一些企业已实施大数据策略,一些企业正在开发或者打算开发大数据。
这是第一步,大数据改变了业务模式,比如通过捕捉、存储和分析用户在社交媒体上发表的售后体验,可以提高质量,改进服务。企业不仅应捕捉和存储大数据,还应开发和利用大数据,因为只有开发和利用大数据,才能挖掘出大数据蕴藏的巨大价值,特别是应使用专门工具分析和开发杂乱的、非结构化的数据。
了解消费者情绪,优化供应链,去除虚假数据,为此,企业应对基础设施和软件进行投资,运用相应算法处理大数据,并聘请数据科学家完成相应工作。
只有对数据进行压缩处理,智能地展现与特定内容相关的数据,才能更好地利用大数据。例如,企业的高级管理人员往往对公司的各个生产线的汇总数据感兴趣,而产品经理则仅对自己负责管理的某一产品的相关数据感兴趣,且需要与此相关的详细数据,通过相应工具软件,他们各自从大量数据中找到了所需数据。
电子商务企业的规模在不断增大,企业需要对其核心业务数据进行分析,不能再凭感觉或直觉制定关键决策,最好对所有与客户相关的业务数据进行分析,以留住现有客户,吸引他们购买更多的商品,同时羸得更多新客户。
“好像拥有的数据越多,我们需求的越多。”随着数据量的增加,模式匹配,模拟和预测分析技术变得愈发重要。使用合适的搜索引擎,从海量数据中自动筛选出有用的数据,找出问题和机会,并自动利用这些搜索结果,这对企业来说是非常重要的。
我们分析的数据的容量在不断增大,如果能够利用相应工具自动对数据进行分析,就简化了数据分析工作,员工不必再象从前那样在必要时才筛选、分析数据,而是可以随时完成这项工作。
分析和细分市场,根据个人或消费群体的喜好或者消费行为提供富有个性化的产品,比如,营销部门可以收集一些有价值的信息,找出购物者的兴趣所在,然后有针对性地组织一些营销活动,从而增加了企业在竞争中的优势,
2013年,在大数据研究方面取得了很大进展,许多企业认识到大数据对企业发展的重要性,但还没有广泛地开发和利用大数据,期待2014年会有更多的企业从大数据中挖掘到财富。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16