
从Hadoop 说起 六个真实的大数据应用案例_数据分析师
案例主要关注三个问题:数据从哪里来?数据如何存储?数据如何计算?
1.1 背景
创建于2002年,提供网络电台和网络音乐服务的社交网络。每个月有2500万人使用Last.fm,产生大量数据。现在有了中文版http://cn.last.fm/,界面很不错!
2006年初,Last.fm开始使用Hadoop,几个月后投入实际应用。Hadoop是Last.fm基础平台的关键组件,有2个Hadoop集群,50台计算机,300个内核,100TB的硬盘空间。在集群上,运行数百种各种日常作业,包括日志文件分析,A/B测试评测,即时处理和图表生成。
1.2 图表生成
图表生成是Hadoop在Last.fm的第一个应用。
1.3 数据从哪里来
Last.fm有两种收听信息:用户播放自己的音乐,如pc或者其他设备mp3,这种信息通过Last.fm的客户端或者第三方应用发送到Last.fm,这一类叫scrobble收藏数据;用户收听Last.fm网络电台的节目,以及听节目时候的喜爱,跳过,禁止等操作信息,这一类叫radio listen电台收听数据。
1.4 数据存储
收听数据被发送到Last.fm,经历验证和转换,形成一系列有空格分隔的文本文件,包含用户id-userid,音乐id-trackid,这首音乐被收藏的次数scrobble,这首音乐在电台中收听的次数radio,被跳过的次数skip。真实数据达到GB级别,有更多属性字段。
1.5 数据处理
1.5.1 Unique Listeners作业:统计收听某一首歌的不同用户数,也就说说,有多少个用户听过某个歌,如果用户重复收听,只算一次。
1.5.2 Sum作业:每首歌的收听总数,收藏总数,电台收听总数,被跳过的总数。
1.5.3 合作作业:每首歌的被多少不同用户收听总数,收听总数,收藏总数,电台收听总数,被跳过的总数。
1.5.4 这些数据会被作为周排行榜等在Last.fm主站上显示出来。
2.1 背景
Facebook社交网络。
开始时,试用一个小Hadoop集群,很成功。同时开始开发Hive,Hive让工程师能用SQL语言处理Hadoop集群的数据,毕竟很多人更熟悉SQL。后来,Facbook运行了世界第二大Hadoop集群,数据超多2PB,每天加入10TB数据,2400个内核,9TB内存,大部分时间硬件满负荷运行。
2.2 使用情况
2.2.1 在大规模数据是以天和小时为单位产生概要信息。如用户数,网页浏览次数,网站访问时间增常情况,广告活动效果数据,计算用户喜欢人和应用程序。
2.2.2 分析历史数据,以设计和改进产品,以及管理。
2.2.3 文件存档和日志查询。
2.3 广告分析
2.3.1 cpc-cost perclick点击数计费,cpm-cost per mille每千人成本。
2.3.2 个性化广告定制:根据个体用户进行不同的内容剪辑。Yahoo!的SmartAds,Facebook的Social Ads,Engagement Ad广告意见/嵌入视频交互。Facebook每天处理1TB数量级广告数据。
2.3.3 用Hive分析A/B测试的结果。
2.3.4 Hadoop和Hive分析人气网站,生物信息公司,原油勘探公司,在线广告。
3.1 Nutch框架用户建立可扩展的crawler网络爬虫和搜索引擎。
3.2 架构
3.2.1 crawlDb网页数据库:跟踪网络crawler抓取的网页和它们的状态。
3.2.2 fetchlist爬取网页清单:crawler定期刷新web视图信息,下载新的网页。
3.2.3 page content原始网页数据:从远程网站下载,以原始的未世界的格式在本地存储成字节数组。
3.2.4 解析的网页数据:Nutch为html, pdf, open office, ms office, rss提供了解析器。
3.2.5 linkdb链接图数据库:page rank来的。
3.2.6 lucene全文检索索引:倒排索引,基于搜集到的所有网页元数据和抽取到的纯文本内容建立。
3.3 使用情况
Nutch使用Hadoop作业处理数据。
36大数据知识图谱:
关于Nutch:Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。
4.1 背景
Rackspace hosting为企业提供管理系统。在数百台服务器上为100万用户和几千家公司提供邮件服务。
4.2 使用情况
日志分析。发送邮件需要使用多个postfix邮件代理服务器,大部分消息穿越多个Postfix服务器,但每个服务器只知道邮件的目的地,为了给消息建立完整的历史信息,需要用Hadoop处理日志记录。
4.3 使用方式
在数据中心, syslog-ng从source机器传统日志数据到一组负载均衡的collector收集器机器。在收集器上,日志数据被汇集成一个单独的数据流,用gzip格式进行轻量级压缩。
当压缩的日志流到达本地收集器,数据会被写入Hadoop,这一步用简单的python脚本写入即可。
Hadoop集群有15个数据节点,每个节点使用普通cpu和3个500G硬盘。
4.4 计算
每个电子邮件有一个唯一标示符号queue-id。每个电子邮件有一个唯一的message-id,但恶意客户端会重复发送消息,所以message-id会被伪造。
在Postfix日志,需要用queue-id查找message-id。
第一步,以queue-id为健,进行map,把日志log的每个分配给对应的queue-id,然后,执行reduce过程,根据日志消息数值判断queue-id的发送过程是否完整。
第二步,根据message-id对第一步的结果进行分组,以queue-di和message-id同时为键,以它们对应的日志行作为值,在reuce阶段,判断针对某个message-id的所有queue-id是否合理,验证消息是否离开系统。
36大数据知识图谱:
关于Rackspace:
Rackspace (NYSE:RAX)全球三大云计算中心之一,1998年成立,是一家全球领先的托管服务器及云计算提供商,公司总部位于美国,在英国,澳大利亚,瑞士,荷兰及香港设有分部。在全球拥有10个以上数据中心,管理超过10万台服务器。Rackspace的托管服务产品包括专用服务器,电子邮件,SharePoint,云服务器,云存储,云网站等。在服务架构上提供专用托管,公有云,私有云及混合云。
2010年,Rackspace与美国航空航天局(NASA)合作创始了开源云平台OpenStack。2012年Rackspace宣布在自己的云平台使用建立于OpenStack的技术,并开源自己的云平台软件Rackspace Cloud。
5.1 背景
Cascading是一个开源的Java库,为MapReduce提供抽象层。用Java写Hadoop的MapReduce是有难度的:cascading用简单字段名和数据元组模型代替MapReduce的key-value;cascading引入了比Map和Reduce更抽象的层次,如Function, Fileter, Aggregator和Buffer。
5.2 使用情况
Cascading以字段名和元组的方式,把多个MapReduce的处理简化成一个管道链接起来的形式处理数据。从例子来看非常简洁,需要的代码很少。
6.1 图=节点+连接节点的边。
6.2 Infochimps项目,一个发现,共享,出售数据集的全球性网站。用简单的脚本语言-不超过一页,就可以处理TB级别的图数据。
6.3 在Infochimps,有twitter,faceboobk的数据集;有wiki百科数据集;线虫项目神经愿和突触的联系;高速公路地图等等。
6.4 在网络图分析上可以做出很多很好玩的有趣东东。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13