
从Hadoop 说起 六个真实的大数据应用案例_数据分析师
案例主要关注三个问题:数据从哪里来?数据如何存储?数据如何计算?
1.1 背景
创建于2002年,提供网络电台和网络音乐服务的社交网络。每个月有2500万人使用Last.fm,产生大量数据。现在有了中文版http://cn.last.fm/,界面很不错!
2006年初,Last.fm开始使用Hadoop,几个月后投入实际应用。Hadoop是Last.fm基础平台的关键组件,有2个Hadoop集群,50台计算机,300个内核,100TB的硬盘空间。在集群上,运行数百种各种日常作业,包括日志文件分析,A/B测试评测,即时处理和图表生成。
1.2 图表生成
图表生成是Hadoop在Last.fm的第一个应用。
1.3 数据从哪里来
Last.fm有两种收听信息:用户播放自己的音乐,如pc或者其他设备mp3,这种信息通过Last.fm的客户端或者第三方应用发送到Last.fm,这一类叫scrobble收藏数据;用户收听Last.fm网络电台的节目,以及听节目时候的喜爱,跳过,禁止等操作信息,这一类叫radio listen电台收听数据。
1.4 数据存储
收听数据被发送到Last.fm,经历验证和转换,形成一系列有空格分隔的文本文件,包含用户id-userid,音乐id-trackid,这首音乐被收藏的次数scrobble,这首音乐在电台中收听的次数radio,被跳过的次数skip。真实数据达到GB级别,有更多属性字段。
1.5 数据处理
1.5.1 Unique Listeners作业:统计收听某一首歌的不同用户数,也就说说,有多少个用户听过某个歌,如果用户重复收听,只算一次。
1.5.2 Sum作业:每首歌的收听总数,收藏总数,电台收听总数,被跳过的总数。
1.5.3 合作作业:每首歌的被多少不同用户收听总数,收听总数,收藏总数,电台收听总数,被跳过的总数。
1.5.4 这些数据会被作为周排行榜等在Last.fm主站上显示出来。
2.1 背景
Facebook社交网络。
开始时,试用一个小Hadoop集群,很成功。同时开始开发Hive,Hive让工程师能用SQL语言处理Hadoop集群的数据,毕竟很多人更熟悉SQL。后来,Facbook运行了世界第二大Hadoop集群,数据超多2PB,每天加入10TB数据,2400个内核,9TB内存,大部分时间硬件满负荷运行。
2.2 使用情况
2.2.1 在大规模数据是以天和小时为单位产生概要信息。如用户数,网页浏览次数,网站访问时间增常情况,广告活动效果数据,计算用户喜欢人和应用程序。
2.2.2 分析历史数据,以设计和改进产品,以及管理。
2.2.3 文件存档和日志查询。
2.3 广告分析
2.3.1 cpc-cost perclick点击数计费,cpm-cost per mille每千人成本。
2.3.2 个性化广告定制:根据个体用户进行不同的内容剪辑。Yahoo!的SmartAds,Facebook的Social Ads,Engagement Ad广告意见/嵌入视频交互。Facebook每天处理1TB数量级广告数据。
2.3.3 用Hive分析A/B测试的结果。
2.3.4 Hadoop和Hive分析人气网站,生物信息公司,原油勘探公司,在线广告。
3.1 Nutch框架用户建立可扩展的crawler网络爬虫和搜索引擎。
3.2 架构
3.2.1 crawlDb网页数据库:跟踪网络crawler抓取的网页和它们的状态。
3.2.2 fetchlist爬取网页清单:crawler定期刷新web视图信息,下载新的网页。
3.2.3 page content原始网页数据:从远程网站下载,以原始的未世界的格式在本地存储成字节数组。
3.2.4 解析的网页数据:Nutch为html, pdf, open office, ms office, rss提供了解析器。
3.2.5 linkdb链接图数据库:page rank来的。
3.2.6 lucene全文检索索引:倒排索引,基于搜集到的所有网页元数据和抽取到的纯文本内容建立。
3.3 使用情况
Nutch使用Hadoop作业处理数据。
36大数据知识图谱:
关于Nutch:Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。
4.1 背景
Rackspace hosting为企业提供管理系统。在数百台服务器上为100万用户和几千家公司提供邮件服务。
4.2 使用情况
日志分析。发送邮件需要使用多个postfix邮件代理服务器,大部分消息穿越多个Postfix服务器,但每个服务器只知道邮件的目的地,为了给消息建立完整的历史信息,需要用Hadoop处理日志记录。
4.3 使用方式
在数据中心, syslog-ng从source机器传统日志数据到一组负载均衡的collector收集器机器。在收集器上,日志数据被汇集成一个单独的数据流,用gzip格式进行轻量级压缩。
当压缩的日志流到达本地收集器,数据会被写入Hadoop,这一步用简单的python脚本写入即可。
Hadoop集群有15个数据节点,每个节点使用普通cpu和3个500G硬盘。
4.4 计算
每个电子邮件有一个唯一标示符号queue-id。每个电子邮件有一个唯一的message-id,但恶意客户端会重复发送消息,所以message-id会被伪造。
在Postfix日志,需要用queue-id查找message-id。
第一步,以queue-id为健,进行map,把日志log的每个分配给对应的queue-id,然后,执行reduce过程,根据日志消息数值判断queue-id的发送过程是否完整。
第二步,根据message-id对第一步的结果进行分组,以queue-di和message-id同时为键,以它们对应的日志行作为值,在reuce阶段,判断针对某个message-id的所有queue-id是否合理,验证消息是否离开系统。
36大数据知识图谱:
关于Rackspace:
Rackspace (NYSE:RAX)全球三大云计算中心之一,1998年成立,是一家全球领先的托管服务器及云计算提供商,公司总部位于美国,在英国,澳大利亚,瑞士,荷兰及香港设有分部。在全球拥有10个以上数据中心,管理超过10万台服务器。Rackspace的托管服务产品包括专用服务器,电子邮件,SharePoint,云服务器,云存储,云网站等。在服务架构上提供专用托管,公有云,私有云及混合云。
2010年,Rackspace与美国航空航天局(NASA)合作创始了开源云平台OpenStack。2012年Rackspace宣布在自己的云平台使用建立于OpenStack的技术,并开源自己的云平台软件Rackspace Cloud。
5.1 背景
Cascading是一个开源的Java库,为MapReduce提供抽象层。用Java写Hadoop的MapReduce是有难度的:cascading用简单字段名和数据元组模型代替MapReduce的key-value;cascading引入了比Map和Reduce更抽象的层次,如Function, Fileter, Aggregator和Buffer。
5.2 使用情况
Cascading以字段名和元组的方式,把多个MapReduce的处理简化成一个管道链接起来的形式处理数据。从例子来看非常简洁,需要的代码很少。
6.1 图=节点+连接节点的边。
6.2 Infochimps项目,一个发现,共享,出售数据集的全球性网站。用简单的脚本语言-不超过一页,就可以处理TB级别的图数据。
6.3 在Infochimps,有twitter,faceboobk的数据集;有wiki百科数据集;线虫项目神经愿和突触的联系;高速公路地图等等。
6.4 在网络图分析上可以做出很多很好玩的有趣东东。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15