
数据可视化-信息图背后的心理学_数据分析师
随着数据导向在企业中蔚然成风,数据展示类的信息界面也变得重要起来。
拥有可视化数据和交互式界面的它正成为商业用户手中重要的工具。更重要的是数据类信息界面也在以app的形式融入普通用户的生活,帮助管理日常活动,如预算追踪和健康管理。
那么是什么让数据类信息界面如此诱人?人们内心渴望,而又被数据类界面完美呈现的这些因素是什么?
人们喜欢控制感。可以想象一下如果自己处于一个完全黑暗的环境内。很快你体内的“紧急开关”就将被启动,驱使你去了解周遭情况和了解你可以控制什么。
从进化的角度来理解,让周围环境处于我们掌控中,我们才更可能生存下来。潜意识会基于感知到的可控层级帮助我们堤防各种危险(打还是逃)。
数据类信息界面就给了我们这种控制感。不论是了解花销动态的个人财政数据界面还是帮助企业追踪营销预算的营销数据界面,都是提高你对情况的感知,给你基因内渴求的控制感。
数据可视化""="" width="" 600""="" height="" 435""="">
This Marketo dashboard帮助市场团队对预算保持同步,确保花销可控。
大多数的数据界面使用如下三种策略来建立控制感:
数据可视化""="" width="" 600""="" height="" 215""="">
Calvin and Hobbes by Bill Watterson
在Jakob Nielsen的“Short-Term Memory and Web Usability”一文中,指出人类在短期记忆中不能记住太多信息,特别是多个抽象的感念或者不寻常的数据。他引用的他人研究建议短期记忆的数量不应该超过七个,这些信息存在我们的大脑里面也只有20秒钟。
数据界面就是为了克服短期记忆的难题。通过在一个屏幕用户的眼睛跨度内呈现所有相关数据,减少对短期记忆的依赖。不需记忆任何东西,因为它们都在你眼前。
然而,在大多情况下,数据会多到在一屏之内显示不完。因此数据界面围绕短期记忆的限制做了如下三件事:
为了更好的理解这一点,对比如下两种展示数据的方式:一个表格和一张折线图。
数据可视化""="" width="" 600""="" height="" 141""="">
数据可视化""="" width="" 600""="" height="" 482""="">
记忆折线图中的上下趋势比表格中的准确数字要简单得多
在概览屏中提供了关键数据的快照,减少短期记忆的负担。但用户也可以深入了解如果他们需要特定数据的详细信息。
数据可视化""="" width="" 600""="" height="" 789""="">
The RescueTime的概览提供了关键指标的鸟瞰图,并且可以进一步了解细节。
将信息分解成可消化的小块,可以降低用户的认知负担。将相关的信息放到同一个tab下面,方便用户来分析他们。
数据可视化""="" width="" 600""="" height="" 445""="">
Mint将数据分解成吐下tab:概览,交易,预算,目标,趋势,投资和如何更省。
保持简单!这一原则在商业和现实生活中同样适用。
比如有个库存管理系统。如果使用纸笔,将花费好几个小时来维持同步入库和出库订单的记录(更别提这么做需要的腿脚),有了数字化的数据界面,这些时间可以被大幅衰减。
数据可视化""="" width="" 600""="" height="" 646""="">
Stitch Labs就是这样一个库存管理系统,可以让商家同时监控多个销售渠道的库存。
随着响应式设计的普及,这些数据信息将能够跨设备使用,让用户可以通过台式机、笔记本或其它移动设备访问该数据。
数据可视化""="" width="" 600""="" height="" 198""="">
The FitBit dashboard可以在多个设备上使用。
任何将数据类信息作为关键服务的产品,都需要将以上用户的心理需求牢记在心。用户喜欢控制感,她们的短期记忆很有限,他们喜欢简单的东西。这三个因素应该成为所有数据信息界面设计的基础。了解你们的用户需求,将它们加入你的设计实践中,这样你就能建立完美的数据信息界面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10