
数据可视化-信息图背后的心理学_数据分析师
随着数据导向在企业中蔚然成风,数据展示类的信息界面也变得重要起来。
拥有可视化数据和交互式界面的它正成为商业用户手中重要的工具。更重要的是数据类信息界面也在以app的形式融入普通用户的生活,帮助管理日常活动,如预算追踪和健康管理。
那么是什么让数据类信息界面如此诱人?人们内心渴望,而又被数据类界面完美呈现的这些因素是什么?
人们喜欢控制感。可以想象一下如果自己处于一个完全黑暗的环境内。很快你体内的“紧急开关”就将被启动,驱使你去了解周遭情况和了解你可以控制什么。
从进化的角度来理解,让周围环境处于我们掌控中,我们才更可能生存下来。潜意识会基于感知到的可控层级帮助我们堤防各种危险(打还是逃)。
数据类信息界面就给了我们这种控制感。不论是了解花销动态的个人财政数据界面还是帮助企业追踪营销预算的营销数据界面,都是提高你对情况的感知,给你基因内渴求的控制感。
数据可视化""="" width="" 600""="" height="" 435""="">
This Marketo dashboard帮助市场团队对预算保持同步,确保花销可控。
大多数的数据界面使用如下三种策略来建立控制感:
数据可视化""="" width="" 600""="" height="" 215""="">
Calvin and Hobbes by Bill Watterson
在Jakob Nielsen的“Short-Term Memory and Web Usability”一文中,指出人类在短期记忆中不能记住太多信息,特别是多个抽象的感念或者不寻常的数据。他引用的他人研究建议短期记忆的数量不应该超过七个,这些信息存在我们的大脑里面也只有20秒钟。
数据界面就是为了克服短期记忆的难题。通过在一个屏幕用户的眼睛跨度内呈现所有相关数据,减少对短期记忆的依赖。不需记忆任何东西,因为它们都在你眼前。
然而,在大多情况下,数据会多到在一屏之内显示不完。因此数据界面围绕短期记忆的限制做了如下三件事:
为了更好的理解这一点,对比如下两种展示数据的方式:一个表格和一张折线图。
数据可视化""="" width="" 600""="" height="" 141""="">
数据可视化""="" width="" 600""="" height="" 482""="">
记忆折线图中的上下趋势比表格中的准确数字要简单得多
在概览屏中提供了关键数据的快照,减少短期记忆的负担。但用户也可以深入了解如果他们需要特定数据的详细信息。
数据可视化""="" width="" 600""="" height="" 789""="">
The RescueTime的概览提供了关键指标的鸟瞰图,并且可以进一步了解细节。
将信息分解成可消化的小块,可以降低用户的认知负担。将相关的信息放到同一个tab下面,方便用户来分析他们。
数据可视化""="" width="" 600""="" height="" 445""="">
Mint将数据分解成吐下tab:概览,交易,预算,目标,趋势,投资和如何更省。
保持简单!这一原则在商业和现实生活中同样适用。
比如有个库存管理系统。如果使用纸笔,将花费好几个小时来维持同步入库和出库订单的记录(更别提这么做需要的腿脚),有了数字化的数据界面,这些时间可以被大幅衰减。
数据可视化""="" width="" 600""="" height="" 646""="">
Stitch Labs就是这样一个库存管理系统,可以让商家同时监控多个销售渠道的库存。
随着响应式设计的普及,这些数据信息将能够跨设备使用,让用户可以通过台式机、笔记本或其它移动设备访问该数据。
数据可视化""="" width="" 600""="" height="" 198""="">
The FitBit dashboard可以在多个设备上使用。
任何将数据类信息作为关键服务的产品,都需要将以上用户的心理需求牢记在心。用户喜欢控制感,她们的短期记忆很有限,他们喜欢简单的东西。这三个因素应该成为所有数据信息界面设计的基础。了解你们的用户需求,将它们加入你的设计实践中,这样你就能建立完美的数据信息界面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26